

SHAPED CHARGE JET ATTACKS WHAT SHAPED CHARGE ? WHICH TEST SET-UP ?

IMEMG's Expert Working Group on Hazard Assessment & Classification

Presented by Yves GUENGANT

www.imemg.org

INTRODUCTION

INTRODUCTION

• European Organisation assembling twenty leading armament groups working with Insensitive Munitions technologies

INTRODUCTION

Express the armament industry' viewpoint with regards to relevant transnational regulations and requirements.

Expert Working Groups

- Computer Models for IM Performance,
- Cost & Benefit Analysis,
- Fast Cook-off Test Procedure,
- Effects of Ageing,
- Hazard Assessment & Classification.

Hazard Assessment & Classification Expert Working Group to present this analysis

CONTEXT

2012 IM&EMTS #13849 SHAPED CHARGE JET ATTACKS: WHAT SHAPED CHARGE? WHICH TEST SET-UP?

CONTEXT 1/2

STANAG 4526 (Ed2)

SHAPED CHARGE JET – MUNITIONS TEST PROCEDURE

» not a real standardized reference:

- not ratified by all Nations,
- 50 mm Rockeye Shaped Charge not readily available,
- Performance not correctly defined for determination of an equivalent Shaped Charge,
- test set-up not clearly defined (conditioning plate, target nose, ...),
- each test center to use own Shaped Charge and test procedure.

CONTEXT 2/2

Recent feedback from Afghanistan and Iraq

→ Threat Hazard Analysis review :

Standard Shaped Charges design which would be representative of numerous RPG7 types:

- USA MIL-STD-2105(D) specifies a standardised LX-14 81mm Shaped Charge.
- France has selected CCEB 62,
- **Germany** is developing PG-7 replica;

» Presentation to introduce industrial experts points-of-view to the IM community.

CURRENT SITUATION

CURRENT SITUATION

- STANAG 4439 & AOP 39
- TEST PROCEDURE STANAG
- IMPLEMENTATION DIFFICULTIES
- FEED-BACK FROM FRANCE
- FEED-BACK FROM GERMANY
- FEED-BACK FROM UNITED KINGDOM
- COMPARISON OF IM SIGNATURES

STANAG 4439 & AOP 39

- **STANAG** 4439 ed3
 - *Threat* : Shaped Charge weapon attack -> Requirement: **Type III**,
 - Shaped Charge Jet, Munitions Test Procedure → STANAG 4526 ed2.

STANAG 4439 & AOP 39

- AOP 39 ed3
 - The Baseline Threat Range
 - » shaped charge caliber up to 85 mm diameter (AOP39 table 1).
 - For the purpose of **IM**:
 - » shaped charge to be "broadly representative of Rocket Propelled Grenades and top attacks bomblets" (AOP39 annex F)
 - **Test conditions** (AOP39 annex H):
 - » 50 mm Rockeye or equivalent V²d charge,
 - » Use of conditioning plate not defined.

TEST PROCEDURE STANAG

• STANAG 4526 (Ed2)

SHAPED CHARGE JET – MUNITIONS TEST PROCEDURE

- designed for "determining the degree of reaction of a munition when hit by typical top attack bomblet shaped charge jet"
 - » not ratified by all NATO nations
 - » specified charge (50mm Rockeye) not readily available in many countries, therefore **not used** in IMEMG's Nations

TEST PROCEDURE STANAG

• STANAG 4526 (Ed2)

SHAPED CHARGE JET – MUNITION TEST PROCEDURES (cont'd)

- » test set-up **not precisely defined** (potential use of conditioning plate)
- » inconsistent values about 50mm Rockeye (confirmed during MSIAC IM Technology Gaps Workshop - June 2011)

Paper: "Rocket Propelled Grenade Shaped Charge Initiation Test Configuration for IM Threat Testing" by Ernest L. Baker and al.

IMPLEMENTATION DIFFICULTIES

- The V²d values is the link between different shaped charges:
 - Various shaped charges allowed, ... if same V²d
 - But values noted in STANAG 4526 Table 1 (to come) much too high by at least a factor of > 2

	Threat	Representative V ² D (mm ³ /µs ²)				
	Top Attack Bomblet	200				
STANAG 4526 ed2	SCJ with characteristics of 50mm Rockeye	360				
	Rocket Propelled Grenade	430				
	Anti-Tank Guided Missile	800				

IMPLEMENTATION DIFFICULTIES

- For example RPG-7
 - typical measured values for the Shaped Charge Jet tip:

V ~ 7.5 mm/µs and d ~ 3 mm gives a V²d value of ~ 170 mm³/µs²

- **different from** 430 mm³/ μ s² as noted in previous table
- \rightarrow i.e. a factor of 430/170 = 2.5 too large.

IMPLEMENTATION DIFFICULTIES

• As V²d is the link between different shaped charges

» very important to define exactly how V and d should be measured as below;

» Both numbers V and d are not constant but variably over the Shaped Charge Jet length;

» the **scattering** within the measurements should be taken into account.

FEED-BACK FRANCE

- French test centers to use different Shaped Charges:
 - MILAN K115, MILAN 2, ACL 89 (mm), RPG-7, CCEB 62 (mm),...
 - Test conditions vary: target nose, stand-off, conditioning plate...

with target nose

Bomblet

with conditioning plate

FEED-BACK GERMANY

- Various Shaped Charges:
 - DM1244 (44 mm diameter)
 - PG-7 replica (75 mm)

Bomblet Caliber 44 mm

PG-7 Replica Caliber 75 mm

FEED-BACK UNITED KINGDOM

- Shaped Charges used:
 - IBL 755 (50 mm diameter),
 - MLRS Bomblet : M42 (34 mm diameter),
 - Standard DERA Fort Halstead K4 (63.5 mm diameter).

EMTAP test method define K4 Shaped Charge:

Conditioning plate can be used.

FEED-BACK UK

- The SCJ test is only carried out
- » when required by Threat Hazard Assessment of the relevant environments for the munition,
- » However frequently used for assessing the IM response for Large Calibre Gun Propellant Charges,
- » Validity considered by IMAP (IM Assessment Panel),

IMAP also review the testing conducted.

- Conditioning plate often use to :
 - adjust V²d value according to specific Threat Hazard Analysis,
 - avoid the rear slug effect discrepancies.
 - » a munition to pass the STANAG 4526 but which is the **real stimulus**?

• In-service Shaped Charge are equipped with target nose

» i.e. for RPG7, target nose can reduce significantly the V²d with the "same" charge

- Main parameters to be known
 - Shaped Charges
 - » Diameter from 45 mm to 120 mm,
 - » In-service charge: with or without target nose,
 - » High performance (tapered & fast) jet /// un-optimized and cheap serial charge,
 - Conditioning plate use
 - Stand-off value
 - Break-up time
 - Penetration capability

 Difficult to understand when listed in a table with colors-coded boxes (AOP39 ed3)

				FH	SH	BI	FI	SR	SCJI
		Configuration 1		v		NR	IV	N/A	Ш
Colour Coding									
Green	IM re	Pass (P)	N/A	N/A	1				
	IM requirement not fulfilled.								
Yellow	Yellow One response level difference between the assessed response level and the IM requirement								F
Red	IM req Two and plus response levels level ar	IM requirement not fulfilled. o and plus response levels difference between the assessed response level and the IM requirement							
White	Not Assessed (N/A) Not Assessed						N/A	N/A	(P)
						7.62 Ball			
		Full-up Round		(I)	V	IV	Ш	Р	F

 Difficult to understand when listed in a table with colors-coded boxes (AOP39 ed3)

				FH	SH	BI	FI	SR	SCJI	
			Configuration 1		v		NR	IV	N/A	Ш
	Colour Coding									
	Green	IM r	Config	uration 2	Ш		IV	N/A	N/A	I.
		IM rec								
	Yellow	One response level differenc th	Configu- ration 3	Warhead	(1)	N/A	NR	V Main		
	Red	IM rec Two and plus response levels level a						Charge III Booster	P F	F
	White	No		gu- ^{1 3} Propulsion Unit	IV	v	V 0.50 AP	N/A	N/A	(P)
1		I					IV 7.62 Ball			(,)
				Full-up Round	(I)	v	IV	ш	Р	F

FUTURE CHANGES

FUTURE CHANGES

- NEW TRENDS IN THREAT DEFINITION
- FRANCE
- GERMANY
- USA

NEW TRENDS IN THREAT DEFINITION

- Recent feedback from Afghanistan and Iraq led to a Threat Hazard Analysis review
 - » RPG-7 is now the sole considered Shaped Charge Threat, RPG7-V has been measured at 140 mm³/ μ s²
 - » Due to lack of RPG-7 reliability across various manufacturers, it is necessary to develop RPG-7 surrogate,

.../...

NEW TRENDS IN THREAT DEFINITION

- Recent feedback from Afghanistan and Iraq led to a Threat Hazard Analysis review
 - » Many nations are designing their own RPG-7 surrogate and/or Standardised Shaped Charge
 - **USA** : LX-14 81mm (MIL-STD-2105(D))
 - France : CCEB 62 (mm)
 - **Germany** : 75 mm Shaped Charge "PG-7 German replica"

- CCEB 62 = the French Standardized Shaped Charge for IM Signature assessment
 - MoD Instruction N°211893/DEF/DGA/INSP/IPE July 21, 2011
 - **STANAG 4526 implemented** with CCEB62
 - Test Procedure defined in French Standard: NF T70-511
 - CCEB62 performances characteristics (i.e. V²d) are available and will be confirm in next future.
- Conditioning mild steel plates can be used
 - Critical V²d determination: detonation/no detonation for EM characterization
 - Adjust V²d to specified value (customer requirements)

V²d (mm³/µs²)	203	103	93	82.5	72	62	41.5	52	31	21
Steel Plate thickness (mm)	0	20	25	40	60	80	110	150	200	280

CCEB 62 : Example of Free Jet X-Ray pictures (at two successive times)
 →Note straightness diameter

CCEB62 manufectured by NEXTER Munitions

GERMANY

• PG-7 replica would become German standard

• PG-7 replica (75 mm) manufactured by Dynamit Nobel.

- LX-14 81mm appears as US Standard Shaped Charge
 - MIL-STD-2105(D) requirement
 - Charge design and performance **are available** (E. L. Baker's Paper)
 - Tests seem to be always carried out with a 4" aluminum conditioning block, in that situation
 - » the V²d = 141 mm³/ μ s²,
 - » tolerance about this value not given

• LX-14 81mm appears as US Standard Shaped Charge (cont'd)

- the LX14 explosive loading characteristics are not precisely defined:
 - no real guarantee that various LX14 batches manufactured by different producers will have the same performance,
 - » real performance with its tolerance would be re-checked.

2012 IM&EMTS #13849 SHAPED CHARGE JET ATTACKS: WHAT SHAPED CHARGE? WHICH TEST SET-UP?

- **Concerned** by the lack of consistency in various test procedures.
- Difficult to compare munitions responses to Shaped Charge Jet attack.
- NATO standards should be agreed and practicable with reproducibility by all member countries.

• Shaped charge jet harmonization has really begun,

even if charges are different for each nation:

- LX-14 81 mm, CCEB 62, PG-7 Replica
- with V²d that would be closed to 141 mm³/ μ s²
- Each Shaped Charge referred to should have an available and comprehensive technical data pack.

2012 IM&EMTS #13849 SHAPED CHARGE JET ATTACKS: WHAT SHAPED CHARGE? WHICH TEST SET-UP?

• V²d is **not** the sole parameter for munition response:

same stimulus of V²d can outcome Type I and Type V on the same tested item,

- » future standard STANAG Shaped Charges should not vary too much in caliber,
- V²d level **tolerance** should be specified

» that means +/- 10 % or +/- 14 mm³/ μ s²

(for the standard value 141 mm³/ μ s²)

• V²d stimulus of 141 mm³/ μ s² would be much too high:

» most charges (including some insensitive EM) can detonate, only few EIS should survive (Extremely Insensitive Substance in accordance with UN HD 1.6).

» STANAG to define different stimuli according to Life Cycle and Threat Hazard Assessment

If **the standard procedure** is defined with the stimulus: V^2d is 141 mm³/µs² then,

an alternative procedure should consider stimulus around 60 to 70 mm³/ μ s², this value has to be discussed.

Authors

UK

- CEA DAM FRANCE Frank DAVID-QUILLOT
- EURENCO Yves GUENGANT
- MBDA-F
 - Michel VIVES
- NEXTER Munitions
 Jérôme SOMAINI
- ROXEL
 Raymond COLENO
- TDA Armements Carole FOURNIER
- RWM Italia SpA
 Massimo CASTIGLIA

• MBDA TI

- MBDA TDW GERMANY
 Dr Werner ARNOLD
- RHEINMETALL WM GmbH Dr Gerhard HUBRICHT
- AWE Plc.
 Helen FLOWER
- BAE Systems GCSM
 Charles MARSHALL
- CHEMRING ENERGETICS
 John HAND
- MBDA-UK
 Sean RANDALL

ITALY

