

# **IMX-104 Characterization** for DoD Qualification



May 2012 Insensitive Munitions & Energetic Materials Technology Symposium

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Leila Zunino (973) 724-3783 Leila.zunino@us.army.mil



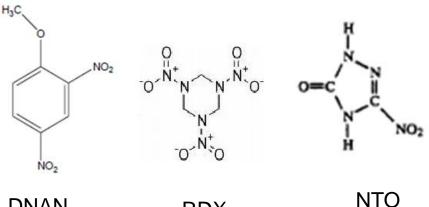
Distribution Statement A: Approved for public release; distribution is unlimited

Abstract #13852



# Introduction




- PM CAS initiated Common Low-cost Insensitive Munitions Explosive Program
  - Affordable TNT and Comp B Replacement for near term insertion
    - Goal 1 Select one common candidate to replace both
    - ➢ Goal 2 Select one candidate for TNT and one for Comp B energy levels
  - > Results
    - IMX-101 selected as TNT replacement
    - IMX-104 selected as Comp B replacement
- > Overall Program Objectives
  - Provide an insensitive replacement for Comp B with equivalent performance
  - Provide characterization data to support the qualification of IMX-104 for full use in Army and USMC ammunition
  - Implement IM Solution in 81mm, 60mm & 120mm Mortars



# **IMX-104**



- IMX-104 Formulation
  - > 2,4-Dinitroanisole (DNAN)
  - 3-Nitro-1,2,4-triazol-5-one (NTO)
  - > RDX
- Formulated from available ingredients
- Detonation energy equivalent to Comp B
- Low hazard sensitivity
- Melt Pour processing similar to Comp B
  - > 90,000 lbs produced at Holston AAP
  - Batch size = 545 kg (1200 lb)



DNAN

RDX





# **IMX-104 Qualification**



#### > DoD Energetic Materials Qualification Process

**Test Protocol: (1)** Allied Ordnance Publication Seven (AOP-7) (Edition 2 Rev. 3), "Manual of Data Requirements and Tests for the Qualification of Explosive Materials for Military Use", December 2007.

> (2) Standardization Agreement (STANAG) 4170 (Edition 3), "Principles and Methodology for the Qualification of Explosive Materials for Military Use", 2007.

- (3) DoD Energetics Qualification Program Matrix for Main Charge Explosives
- (4) NAVSEAINST 8020.5C
- Comprehensive assessment of the Energetic Material
  - Safe and Suitable for the intended use
  - Test Protocols Coordinated with NOSSA
  - Single lot tested (unless noted)

#### - IMX-104 Lot# BAE09E408-003


TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.



# **STABILITY CHARACTERIZATION**



| TEST TITLE                                | TEST METHOD                                          | TEST CONDITION                                 | TEST<br>RANGE OR<br>LIMIT   | TEST<br>RESULT              | REFERENCE<br>RESULTS<br>(PAX-21 AND COMP B) |
|-------------------------------------------|------------------------------------------------------|------------------------------------------------|-----------------------------|-----------------------------|---------------------------------------------|
| Vacuum Thermal Stability<br>(VTS or MVTS) | MIL-STD-1751A<br>(1061 or 1063)<br>Or<br>STANAG 4556 | 5.00±0.05g<br>100 °C/48 h<br>Or<br>100 °C/40 h | ≤ 2 ml/g of<br>gas evolved  | 0.571 ml/g<br>(100 °C/40 h) | PAX-21: 0.18 ml/g<br>Comp B: 0.602 ml/g     |
| Thermal Stability at +75 °C               | TB 700-2<br>UN Test 3c                               | 50g<br>75 °C/48 h                              | Evidence of<br>Self Heating | No Reaction                 | PAX-21: No Reaction<br>Comp B: No Reaction  |



➤IMX-104 VTS compatibility tested with all mortar system components

>ALL MATERIALS COMPATIBILE

Distribution Statement A: Approved for public release; distribution is unlimited

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.<sup>5</sup>

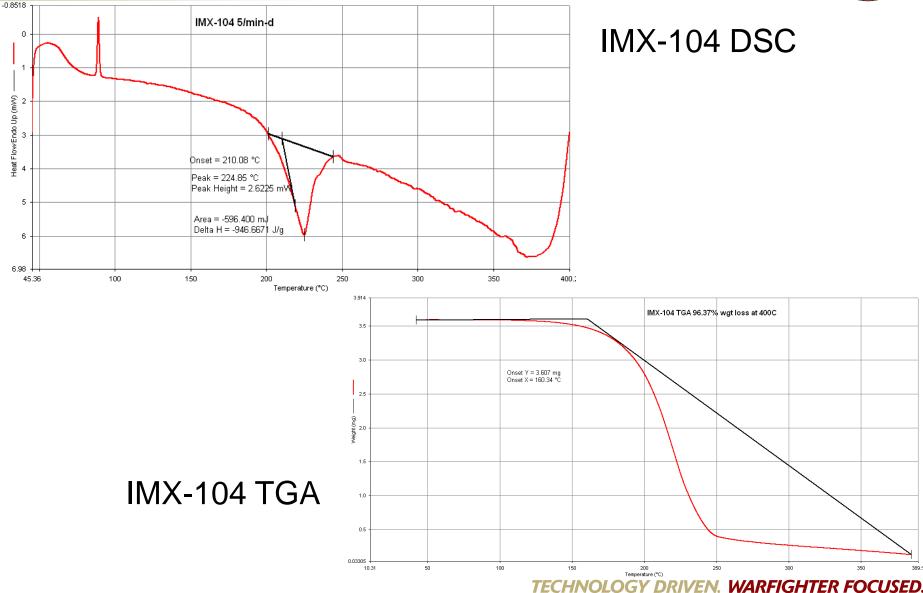
RDECOM) THERMAL CHARACTERIZATION



| TEST TITLE | TEST<br>METHOD                               | TEST<br>CONDITION  | TEST RANGE OR<br>LIMIT                                                                                               | TEST<br>RESULT                                                     | REFERENCE<br>(PAX-21 AND                                                                                                                              |                                                                           |
|------------|----------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| DSC        | MIL-STD-1751A<br>(1072)<br>Or<br>STANAG 4515 | 20 mg<br>10 °C/min | Endotherm(s):<br>Exotherm(s):<br>Onset Temp.<br>Peak Temp.                                                           | Endotherm:<br>89°C<br>Exotherm:<br>Onset: 212 °C<br>Peak: 224.89°C | PAX-21:<br>Endotherm:<br>Exotherm:<br>Onset: 190 °C<br>Peak: 195 °C<br>Comp B:<br>Endotherm: 75°C<br>Exotherm:<br>Onset: 202.14 °C<br>Peak: 228.66 °C | NTO:<br>Endo: °C<br>Exo: 278.6 °C<br>DNAN:<br>Endo: 95 °C<br>Exo: >300 °C |
| TGA        | STANAG 4515                                  | 5 °C/min           | Significant weight loss<br>should be consistent<br>with decomposition<br>temperatures provided<br>by DSC at 5 °C/min | 96% weight loss<br>at 400°C                                        | PAX-21: Negligible<br>weight loss @<br>192.6°C<br>Comp B: 93%<br>weight loss after<br>decomposition                                                   |                                                                           |

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.6




# **THERMAL CHARACTERIZATION**



350

389.5

7





# **CRITICAL TEMPERATURE**



### **One Liter Cook-off Test**

Sample is heated from melt point at 3.3 °C/hr until decomposition

>Minimum margin of safety for processing isTc  $\ge 30^{\circ}$  C above desired processing temperature

Non-catastrophic self heating
142°C - 144°C

Catastrophic self heating or Critical
Temperature
Tc = 161°C - 163°C



Acceptable processing Safety margin

➤IMX-104 processing>> 96°C - 99°C

Distribution Statement A: Approved for public release; distribution is unlimited

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.<sup>8</sup>

# VARIABLE CONFINEMENT **COOK-OFF TESTS**

- Slow Cook-Off (SCO)
  - Conditioned at 200°F for 2 hours
  - 6°F / hr increase in temperature until reaction
- **Results**

RDECOM

- T-75: deflagration
- T-90: deflagration
- T-105: deflagration
- T-120: pressure rupture









- **PAX-21** 
  - T15 & T30: Explosion
- Comp B
  - T15: Explosion
  - T30: Explosion
  - **T90: Explosion**
  - T120: Detonation



DRIVEN. WARFIGHTER FOCUSED.



### VARIABLE CONFINEMENT COOK-OFF TESTS



T15 & T30: Explosion

### Fast Cook-Off (SCO)

- Start at ambient temperature
- Increase as quickly as possible with available heater band

| Test          | 1      | 2      | 3        | 4        |
|---------------|--------|--------|----------|----------|
| Confinement   | 75     | 90     | 105      | 120      |
| Weight        | 61.69g | 61.59g | 62.28g   | 62.36g   |
| Reaction Temp | 442 F  | 415 F  | 435 F    | 436 F    |
| Ambient Temp  | NA     | NA     | NA       | NA       |
| Time          | 8 min  | 7 min  | 9 min    | 10 min   |
| Reaction Type | Burn   | Burn   | Pressure | Pressure |
|               |        |        | Rupture  | Rupture  |



#### TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.<sup>10</sup>

**PAX-21** 



# SHOCK SENSITIVITY LARGE SCALE GAP TEST



- 50% point between "go" and "no go"
  - Lot BAE09E408-003 baseline (ρ=1.75)
  - 106 cards (32.5 kbar)
  - Multiple BAE Holston batches
  - 120.5 cards (average)

| Batch Number | LSGT (50% Card Gap) |
|--------------|---------------------|
| IMX104-1     | 123.5               |
| IMX104-2     | 121.5               |
| IMX104-3     | 122                 |
| IMX104-4     | 115.5               |
| IMX104-5     | 125.5               |
| IMX104-6     | 119                 |
| IMX104-27    | 111                 |
| IMX104-46    | 117.5               |
| IMX104-48    | 120.5               |
| IMX104-54    | 127                 |
| IMX104-50A   | 119                 |



PAX-21 =162.5 cards Comp B (p=1.69) = 210 cards (19 kbar)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.<sup>11</sup>



# SETBACK SENSITIVITY



- ARDEC setback test
  - collapses a planar air gap against an explosive sample such that the pressuretime history in the gap mimics what would occur if explosive inside a warhead broke free of the walls at maximum G's and set back on the gap.
- IMX-104 Results
  - NO GO
  - 18,000 G @ 217.9 (max) mills gap



PAX-21: GO @ 12,000G, Gap = 88.5 mills Comp B: GO @ 12,000G, Gap = 124.8 mills

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.<sup>12</sup>



### VARIATION OF PROPERTIES WITH AGE



70°C

|         | DSC<br>(°C)    | ERL<br>Impact (cm) | BAM<br>Friction (N)   | ESD<br>(J)       | LSGT<br>(# of cards) |
|---------|----------------|--------------------|-----------------------|------------------|----------------------|
| Month 0 | Peak: 224.9    | 114.4              | 160 no rxn<br>168 rxn | No rxn @<br>0.25 | 106 - 124.5          |
| Month 1 | Peak: 228.6    | > 125.9            | 216 no rxn<br>240 rxn | No rxn @<br>0.25 | NR                   |
| Month 2 | Peak: 229.2    | > 125.9            | 192 no rxn<br>216 rxn | No rxn @<br>0.25 | NR                   |
| Month 3 | Peak: 234.8    | > 125.9            | 216 no rxn<br>240 rxn | No rxn @<br>0.25 | 135                  |
| Month 4 | Peak:<br>229.7 | > 125.9            | 192 no rxn<br>216 rxn | No rxn @<br>0.25 | NR                   |
| Month 6 | Peak: 228.1    | > 125.9            | 192 no rxn<br>216 rxn | No rxn @<br>0.25 | 129.5                |



## VARIATION OF PROPERTIES WITH AGE (continued)



| 60° C   |       |             |              |                |              |
|---------|-------|-------------|--------------|----------------|--------------|
|         | DSC   | ERL         | BAM          | ESD            | LSGT         |
|         | (°C)  | Impact (cm) | Friction (N) | $(\mathbf{J})$ | (# of cards) |
| Month 0 | Peak: | 114.4       | 160 no rxn   | No rxn @       | 106 - 124.5  |
|         | 224.9 |             | 168 rxn      | 0.25           |              |
| Month 1 | Peak: | > 125.9     | 180 no rxn   | No rxn @       | NR           |
|         | 232.9 |             | 192 rxn      | 0.25           |              |
| Month 2 | Peak: | > 125.9     | 180 no rxn   | No rxn @       | NR           |
|         | 231.2 |             | 192 rxn      | 0.25           |              |
| Month 4 | Peak: | > 125.9     | 216 no rxn   | No rxn @       | 133.5        |
|         | 228.3 |             | 240 rxn      | 0.25           |              |
| Month 8 | Peak: | > 125.9     | 216 no rxn   | No rxn @       | 124.5        |
|         | 221.4 |             | 240 rxn      | 0.25           |              |

#### 25°C at 30% Relative Humidity

|          | DSC   | ERL         | BAM          | ESD          | LSGT         |
|----------|-------|-------------|--------------|--------------|--------------|
|          | (°C)  | Impact (cm) | Friction (N) | ( <b>J</b> ) | (# of cards) |
| Month 0  | Peak: | 114.4       | 160 no rxn   | No rxn @     | 106 - 124.5  |
|          | 224.9 |             | 168 rxn      | 0.25         |              |
| Month 12 | Peak: | > 125.9     | 216 no rxn   | No rxn @     | 120.5        |
|          | 215.4 |             | 240 rxn      | 0.25         |              |

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.<sup>14</sup>



# **DETONATION VELOCITY**



#### IMX-104 Detonation Velocity vs. Diameter

| Pellet<br>Diameter (in.) | 8     |   | Average<br>Dent (in.) |
|--------------------------|-------|---|-----------------------|
| 0.75                     | 0     | 2 | 0                     |
| 0.875                    | 7.128 | 2 | 0.109                 |
| 1                        | 7.210 | 2 | 0.144                 |
| 1.125                    | 7.354 | 2 | 0.173                 |
| 1.5                      | 7.420 | 5 | 0.229                 |
| 1.75                     | 7.513 | 5 | 0.282                 |
| 2                        | 7.463 | 5 | 0.335                 |
| 2.25                     | 7.396 | 5 | 0.378                 |
| 2.5                      | 7.631 | 5 | 0.421                 |

#### **Detonation Velocity for Qualified Explosives**

| Formulation          | Detonation Velocity (Km/s) |
|----------------------|----------------------------|
| IMX-104 <sup>1</sup> | 7.4                        |
| Comp B               | 7.98                       |
| PAX-21               | 6.7                        |
| PAX-41               | 7.68                       |
| $PAX-48^2$           | 7.18                       |
| IMX-101 <sup>3</sup> | 6.9                        |



IMX-104 Fiber Optic Detonation Velocity



Witness Plate Dents From FODV Test

All samples were tested at <sup>3</sup>/<sub>4</sub>" diameter except: 1) 2" diameter, 2) 1" diameter, 3) 4" Cylinder Expansion Tube *TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.*<sup>15</sup> Distribution Statement A: Approved for public release; distribution is unlimited



# **CRITICAL DIAMETER**



Determine failure threshold for the propagation of steady-state detonation

|        | Calculated<br>Critical Diameter | Detonation Velocities                                                 |
|--------|---------------------------------|-----------------------------------------------------------------------|
| Shot 1 | 0.687"                          | 7.27 & 7.28 mm/s along the streak (at roughly 0.90" D and 0.70" D)    |
| Shot 2 | 0.691"                          | 7.43 and 7.26 mm/us along the streak (at roughly 0.95" D and 0.70" D) |



IMX-104 Tapered Rod

104 Various Diameter Pellets



Witness Plates for Critical Diameter Post-test

#### **Critical Diameters for Qualified Explosives**

| Formulation | Critical Diameter (inches) |
|-------------|----------------------------|
| IMX-104     | 0.875                      |
| Comp B      | 0.169                      |
| PAX-21      | 0.45 - 0.5                 |
| PAX-41      | <0.5                       |
| PAX-48      | 0.75 - 1                   |
| IMX-101     | 2.6                        |

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.<sup>16</sup>



SUMMARY



➤The qualification test results indicate that IMX-104 meets and exceeds the requirements for Material Release Qualification Program.

 $\succ$ It is insensitive and its properties remain stable with age.

This effort directly supports the PM-CAS ECP of IMX-104
M821A2, M889A1 & M889A2 81mm Mortars
M720A1, M768 & M888 60mm Mortars
M933 & M934A1 120mm Mortars



## ACKNOWLEDGEMENTS



The following individuals supported and assisted the IMX-104 Qualification Effort and truly deserve a great deal of Thanks!

Gerard Gillen Michael Van De Wal Tim Friedhoff James Grabkowski Aleksander Gandzelko Joel Rivera Chandarak Patel Eric Wrobel Akash Shah Garrett Rector Ted Dolch Donald Wiegand Henry Grau Carl Hu Neha Mehta Brian Roos Anne Petrock Garrett Richards Brian Fuchs Brian Travers Joe Christiano Robert Decker Jack Howell Kenneth Lee Sean Swaszek Ruslan Mudryy