

Translating the IM behaviour of munitions to operational consequences

o innovation for life

Peter Hooijmeijer, Gert Scholtes, Martijn van der Voort

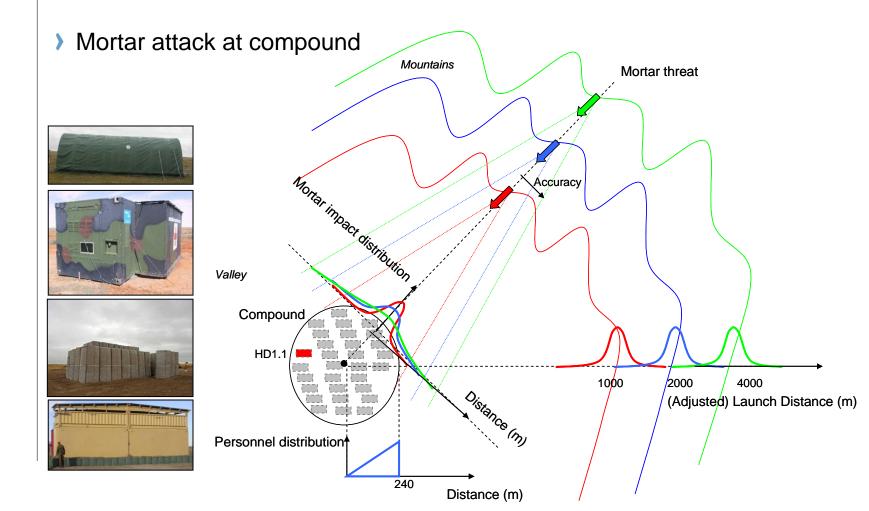
Overview

- Introduction
- > Case study in compound environment
 - Mortar attack
 - Detonation of ammunition storage
- > Sympathetic Reaction toolbox
 - Case study: M107 155 mm
 - Research mitigating materials

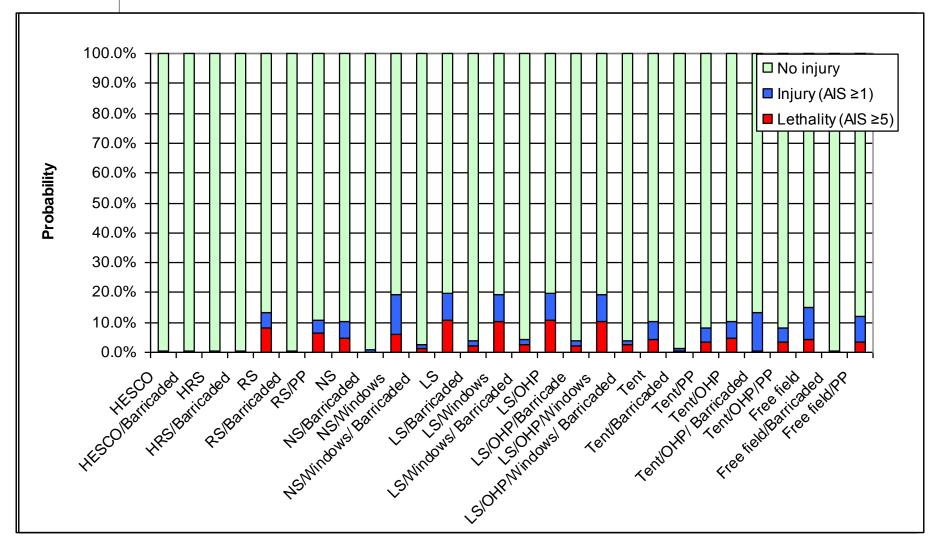
Conclusions

Introduction

- Protection and Survivability of Compounds
- Countermeasures
 - > Situational Awareness
 - Concealment /Camouflage
 - Distance
 - > Physical protection
 - Munition storage



Case study



Case study

Case study

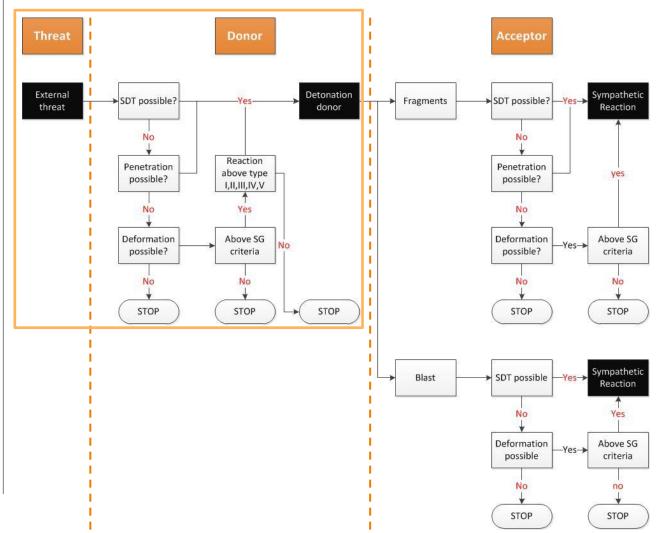
- > 2 Scenarios:
 - Mass detonation entire storage (4000 kg)
 - Limited event: one load board (56 kg)
- > Setting the stage for R&D in the field of IM munitions
- > This is what it's all about!

Overview

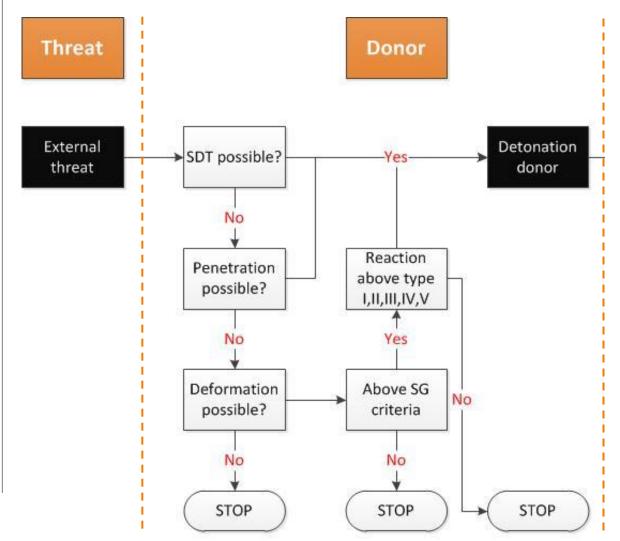
- Introduction
- > Case study in compound
 - Mortar attack at compound
 - Detonation of ammunition storage
- Sympathetic Reaction toolbox
 - Case study: M107 155 mm
 - Research mitigating materials

Conclusions

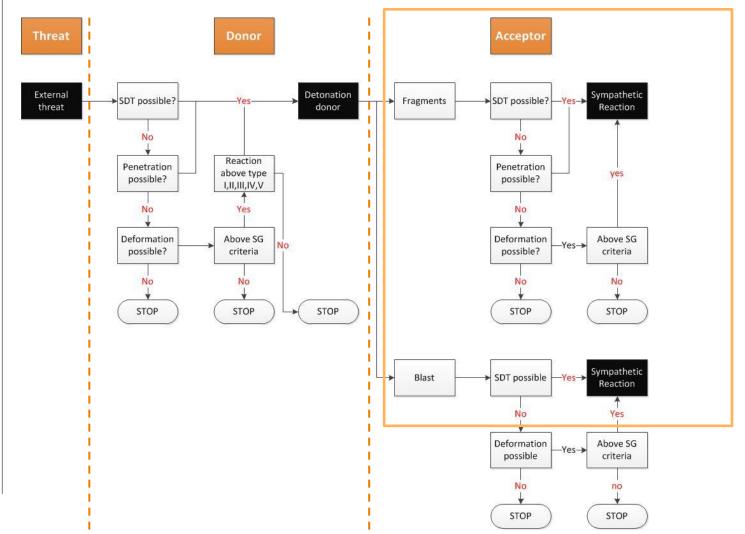
Sympathetic detonation Toolbox


- > Effects external threat on donor
- > Effects detonating article on neighbouring articles
- > Engineering tools
- Spreadsheet implementation
- > Ongoing work!

Outline Toolbox



Outline Toolbox

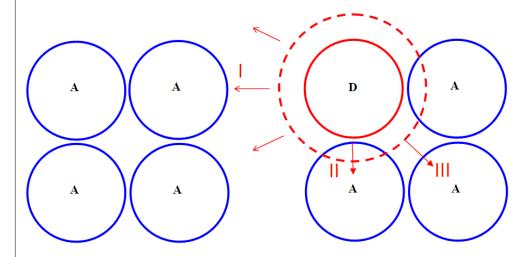


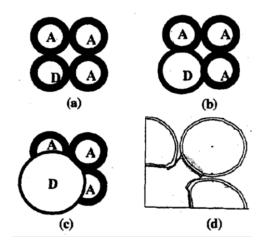
Outline Toolbox

innovation

Case study: Sympathetic detonation M107, 155 mm

- > Threat: effects from incoming mortar
- > Donor and Acceptor: M107, 155 mm, TNT filled


- > Three Mechanisms:
 - I. Acceptor in neighboring stack (10-100 cm's)
 - II. Acceptor in same stack: one-on-one
 - III. Acceptor in same stack: diagonal positioned



Three mechanisms

> Effects on acceptors vary with distance

20 mm distance

40 mm distance

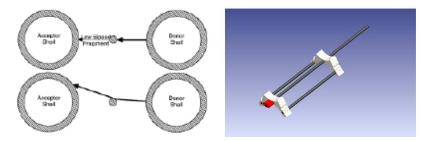
70 mm distance

Results evaluation

> Summary of results

Mechanism	Relevant threat	Result					
I	SDT		Highly likely for different fragments an impact angles				
	Acceptor casing penetration		Highly likely for different fragments shapes and impact angles				
	Blast		Critical shock pressure of the explosive fill exceeded < 2 m				
	Sympathetic reaction, one- on-one (homogeneous loading of acceptor)		No SDT, effect of deformation not evaluated				
	Sympathetic reaction, diagonal (homogeneous loading of acceptor)		SDT is highly likely				

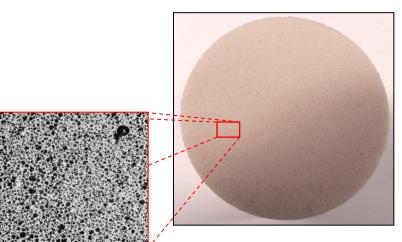
Results of the Toolbox evaluation guides the search for the right mitigating materials or structural solutions

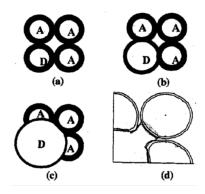


Approach for barrier research

- > A barrier should:
 - Stop Fragments
 - Stop Secundairy fragments (e.g. spall of container)
 - Reduce (Blast) pressure
 - > No secundairy fragments from barrier itself
 - Reduce deformation acceptor

Pumice

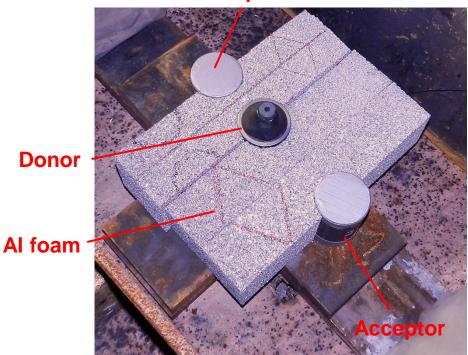

Critical fragment arresting bars



Approach for barrier research – recent advances

- > Blast mitigating materials for situation of SD
 - Based on damage asessement of acceptor
 - Homogeneous load distribution due to intact casing
- > Tested materials (a.o.)
 - > Aluminium foam
 - > Polyurethane foam

innovation for life



Experimental set up

- > Experiment in bunker
- > 1 donor, 2 acceptors at different distances
- Steel cilinders D=70 mm, t= 5 mm
- Semtex10 or sand-fill

Acceptor

> 20 mm distance

No mitigation

> 40 mm distance

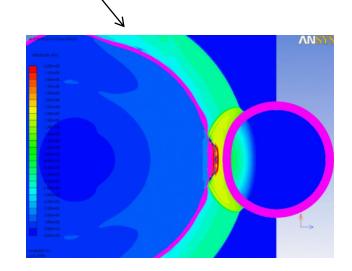
No mitigation

PUR foam

> 70 mm distance

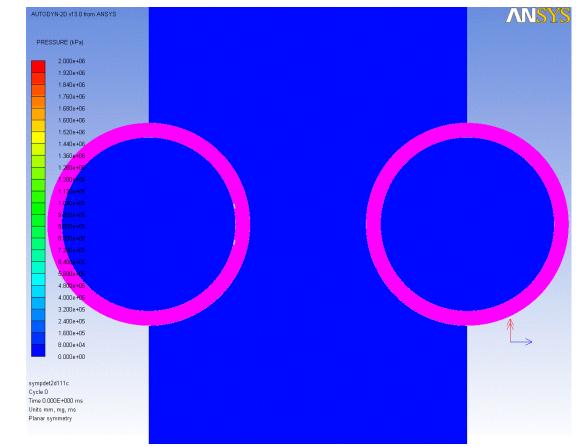
No mitigation

PUR foam



- > Both materials excellent fragment arresting capabilities
- > PUR and AI foam applied
 - Live acceptors
 - > Autodyn simulations

	Distance [mm]					
Material	20	40	70			
PUR foam	n.t.					
Aluminium foam	n.t.					



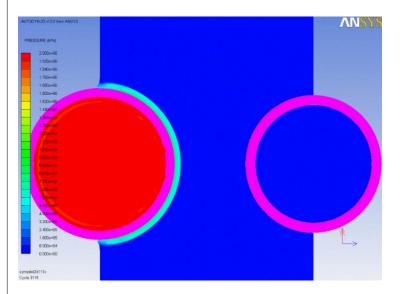
> Simulation of foam behaviour

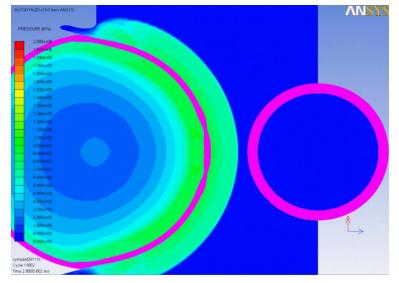
Conclusions

- Engineering tools in the sympathetic detonation Toolbox guide the search for the right mitigating materials or structural solutions
- Substantial difference between effects mass detonation or limited event in compound environment
 - > Quantification of consequences

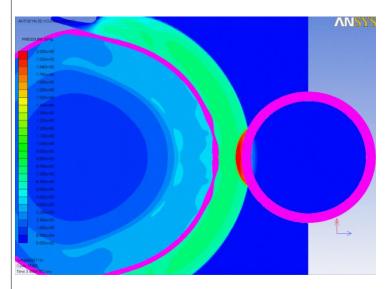
Putting all the work on IM munitions in the right perspective sets the stage and should **motivate** and **challenge you** in your activities. These efforts protect the warfighter in their day to day business.

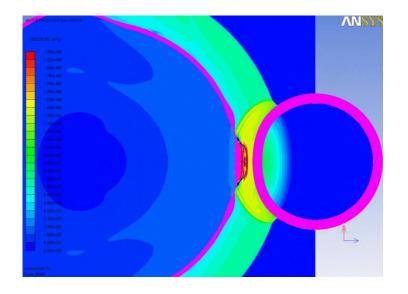
Questions?


Other TNO presentations today

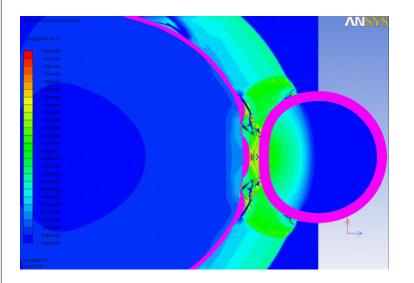

- > Mr. Gert Scholtes: "AN EFP IMPACT IN COMPARISON WITH THE IM FRAGMENT IMPACT TEST", Wednesday, 2.50 pm, Session 7A
- Mr. Wim de Klerk: "IMPROVED IM PROPERTIES OF AN RDX/TPE BASED LOVA PROPELLANT FOR ARTILLERY APPLICATIONS", Wednesday, 4.30 pm, Session 8A

Numerical simulation foam behaviour

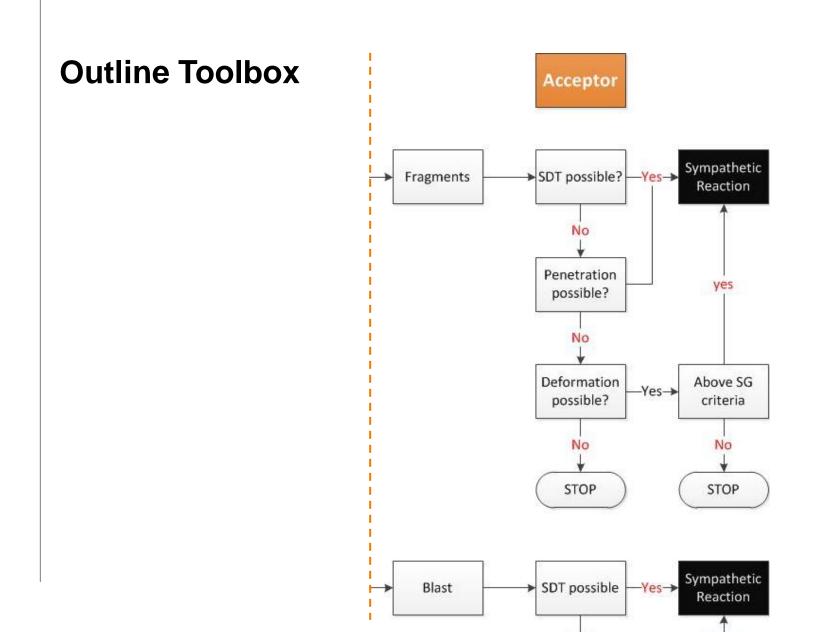


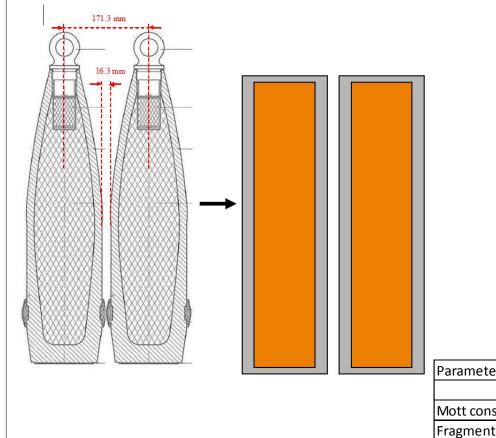

TNO innovation for life

Numerical simulation foam behaviour


TNO innovation for life

TNO innovation for life


Numerical simulation foam behaviour



Design fragment mass

Total number of fragments

Conversion to representative cylinder

		1				
Dimension		Ту	Туре			
		CompB	TN	Г		
Mass metal part	kg	35,0	(1)	35,0		
Design explosive m	nass kg	8,41	8	,39		
Total mass	kg	43,41	43	3,39		
External diameter	mm	155,0	15	55,0		
Internal diameter	mm	112,3	11	13,2		
Thickness casing	mm	21,35	20	0,90		
Length	mm	494,0	50)9,0		
Mott fragment distribution equations						
Parameter		Туре				
		Co	mpB	TNT		
Mott constant	kg^0.5 m [,]	^-7/6	2,714	3,815		
Fragment distribution factor	kg^0.5		2,00	2,75		
Average fragment mass	gr		7,89	15,16		
Heaviest fragment	gr		280	455		
_						

gr

658

36

68

346

NO innovation for life

SDT

- Energy criterium (Haskins/Cook)
- Critical diameter (Green/Lundstrom)

Penetration of casing

- > Fragment stuck in EM
- > THOR code

	A	В	С	D	E	F	G	н	1	J
1	Hugoniot calculations					Vatmin	0,1	km/s		
2	Us=Co+sUp	Co	s	r		Vatmax	0,3	kmłs		HU45 hugoniot is
3	staal	4,58	1,49	7,89		angle2	-0,978961515	degree		vorm of vlak (1,0)
4	Aluminium	5,38	1,34	2,712		angle2	-2,934601533	degree		
5	Comp B	3,03	1,73	1,715		angle3	-1,476123403	degree		cook/haskinsi
6	Octol	1	1	1		angle3	-4,420557984	degree		"Projectile impac
7	Imp vel, km/s	0,5	kmłs	angle	. 0	degree				c2=
8	Imp vel, km/s	m/s 0,500 km/s pressures in GPa		n GPa					c3=	
9	P1=P2=ro1*Us1	"(V-Up1)=1	ro2"Us2"Up				Barriere dikte	10	mm /	Us2=
10	V= Up1+P2/(ro1	"Us1)					c(explosief)	4,13181	km/s 🖌	c2^2-(Us2-Up2)^2
11	P3=ro3*Us3*U	p3=ro2*Us	s2*(V2-Up)				diameter fragment	40,00	mm	Rc=
12	V2=2*Up1						Eflatrod	2596,22	KJ/m2	tau
13							Eroundrod	865,406	KJ/m2	Eflux
14	Quadratic solu	tions for u	qu				tan(alfa)	0,38505		Ec=
15	a=	8,122	a=	0,66713	a=	1,96695	alfa	21,059		Ec-Eflux
16	b=	-62,483	b=	-24,9087907	b=	-12,0318716				
17	C=	21,007	0=	12,0864109	C=	7,97949904				
18			Up match	Prnatch	Up match	Prnatch	Up match	Prnatch		
19			0,352344	5,5920487	0,491702	3,272427	0,756837751	1,32964		
20			1st match up	δ.P	2nd match up	ĉΡ	3rd match up & P			
21										
22	Up	P, steel	P,st refl	P, Al	P, Al refl	P, comp B	P,comb B refl	P, octol		
23	0	0	21,007125	0	12,0864109	0	5,717946851	0		
24	0,2	7,6975	11,898909	3,0634752	8,28930595	1,157968	3,795638236	0,24		
25	0,4	16,335	3,731181	6,4176768	4,7829274	2,553292	2,11068562	0,56		
26	0,6	25,914	0	10,0626048	1,56727526	4,185972	0,663089005	0,96		
27	0,8	36,433	0	13,9982592	0	6,056008	0	1,44		
28	1	47,892	0	18,22464	0	8,1634	0	2		
29	1,2	60,292	0	22,7417472	0	10,508148	0	2,64		
30	1,4	73,633	0	27,5495808	0	13,090252		3,36		
31	1,6	87,914	0	32,6481408	0	15,909712	0	4,16		
32	1,8	103,13	0	38,0374272	0	18,966528		5,04		
33	2	119,3	0	43,71744	0	22,2607		6		
34	2,2	136,4	0	49,6881792	0	25,792228	0	7,04		
35	2,4	154,44	0	55,9496448	0	29,561112	0	8,16		
36	2,6	173,43	0	62,5018368	0	33,567352	0	9,36		

	А	В	С	D	E	F	G	Н	1	J	K	L
1	·····											
2		Residual velocity equation constants					Residual mass equation con			constant	s	
3	Material	c1	a1	b1	g1	11	c2	a2	b2	g2	12	
4	Mild steel	3,69			1,262						0,761	
5	hard homo st				1,262	0,019					0,88	
6	face-hard st	2,305			0,989							
7	Cast iron	2,079										
8	2024T-3 AI	3,936	1,029	-1,072	1,251	-0,139	-6,322	0,227	0,694	-0,361	1,901	
9												
10	Layer 1											
11	Vs, m/s	2000			Assum	e randon	n fragme	nt (A=K	*ms^.667)	, K rand	om =0.5	199
12	ms, g =		A=	3,3012	sq cm		Other fr	agments	K cube=	0,3799		
13	targ thick,cm	0,635							K sphere	0,3079		
14	obliq, ang, de	0										
15	TARGET MA	TERIAI	L: Hard	homoge	eneous	steel (ro	ow 5)					
16												
17	Residual vel=	1052	m/s						rget mat			
18	Residual mas					consta	nts from	rows 4	-8 must b	e used.		
19	limit velocity	934,1	m/s for	perforati	on							
20	max obl	56,91	deg for	perforation	on							
21												
22	Layer 2											
23	targ thick,cm	0,389	A=	1,1618	sq cm							
24	obliq, ang, de											
25	Residual vel=								rget mat			
26	Residual mas					constants from rows 4-8 must be used.						
27	TARGET MA	TERIAI	L: Hard	homoge	eneous	steel (ro	ow 5)					
28												