

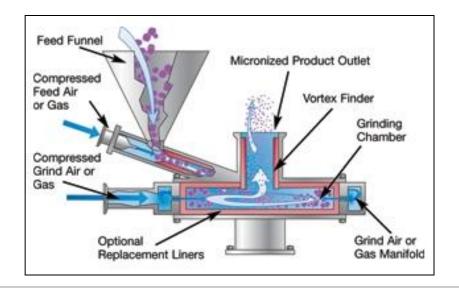
Explosives Coating via Advanced Cluster Energetics (ACE[™]) Fluid Energy Mill (FEM) Technology

NDIA Insensitive Munitions & Energetic Materials Technology Symposium 2012

Alberto Carrillo*, Brian Alexander BAE SYSTEMS OSI, Holston Army Ammunition Plant

C. Gogos New Jersey Institute of Technology

C. Lu Polymer Processing Institute


Background

- Advanced Cluster Energetics (ACE[™]) process developed jointly by New Jersey Institute of Technology (NJIT), Polymer Processing Institute (PPI) and RDECOM-ARDEC
- FEM technology utilizes compressed air to grind particles to less than 10 microns in size
- The ACE-FEM technology has potential to eliminate traditional coating processes
- Coated particles are subjected to particle to particle impact during the mill process where the coating is then re-distributed in-situ to the newly ground product
- Demand for smaller particle size materials to meet IM requirements is increasing

The ACE-FEM Process

- Pre-coated material added to mill system
- Feed air/grind air set to pre-determined position
- Feed rate adjusted for each material
- Product collected
- Analysis of product

Inert Trials

- 10 Milling Trials using inert materials
 - 5 Trials 5% Wax; 95% Potassium Chloride (KCl)
 - 5 Trials 3% Wax; 2% Dioctyladipate (DOA); 0.01% UV Tracer; 94.99% KCI
- Normally HSAAP utilizes slurry coating techniques to coat materials with wax or plastic
 - Due to solubility of KCI these techniques could not be employed
 - Drum coater used to coat KCI and Wax/DOA/Dye mixture
 - Prepared in 1 pound increments and blended for milling trials
 - Samples tested prior to milling
 - Two methods of analysis
 - Thermo Gravimetric Analysis (TGA)
 - Gravimetric Extraction

Wax/KCI Inert Trials (Input Coating)

- Input material prepared in 5 pound increments
- Drum coated and analyzed via TGA
 - Average = 5.992% Wax
 - Standard Deviation = 0.732
- Some variation from batch to batch but overall the wax did adhere to the KCI

Wax/KCI Input Batch	% Wax
Batch 1	6.053
Batch 2	5.799
Batch 3	5.297
Batch 4	5.668
Batch 5	7.784
Batch 6	5.502
Batch 7	5.740
Batch 8	6.552
Batch 9	5.397
Batch 10	6.126

Wax/KCI Inert Trials (Milling Trials)

- Milled in 10 Pound Increments
 - Feed Pressure = 80 PSI
 - Grind Pressure = 100 PSI
 - Feed Rate = 30 lb/hr
- Milling was uneventful resulting in free flowing powder
 - After 24 hours material did clump, most likely due to interaction between moisture and KCI
- Analyzed via TGA for wax content
 - Average = 5.359% Wax
 - Standard Deviation = 0.794
- Similar to input materials

Wax/KCI Milling Trial	% Wax
Trial 1	4.866
Trial 2	6.715
Trial 3	4.713
Trial 4	5.276
Trial 5	5.225

Wax/DOA/Dye/KCI Inert Trials (Input Coating)

- Input material prepared in 5 pound increments
- Drum coated and analyzed via gravimetric extraction with DMSO/Chloroform
 - Due to high volatility of DOA could not use TGA
 - Average = 2.16% DOA; 3.02% Wax
 - Standard Deviation = 0.18; 0.34
- Again variation from batch to batch but overall the KCI is coated with approximately 5% coating

	Wax/DOA/Dye/KCI Input Batch	% DOA	% Wax
	Batch 1	2.33	2.18
Ī	Batch 2	2.24	3.22
Ī	Batch 3	2.27	2.88
	Batch 4	2.15	2.92
, [Batch 5	2.26	3.07
	Batch 6	2.39	2.98
Ī	Batch 7	1.93	3.08
-	Batch 8	2.10	3.27
	Batch 9	1.79	3.43
	Batch 10	2.19	3.15

Wax/DOA/Dye/KCI Inert Trials (Milling Trials)

- Milled in 10 Pound Increments
 - Feed Pressure = 80 PSI
 - Grind Pressure = 100 PSI
 - Feed Rate = 10 lb/hr
- Material was not free flowing and continually compacted into the feed funnel
 - After 24 hours material again clumps, most likely due to interaction between moisture and KCI
- Analyzed via gravimetric extraction
 - Average = 2.16% DOA; 2.72% Wax
 - Standard Deviation = 0.03; 0.06
- Results in approximately 5% Coating

Wax/DOA/Dye/KCI Milling Trial	% DOA	% Wax
Trial 1	2.16	2.69
Trial 2	2.18	2.64
Trial 3	2.14	2.75
Trial 4	2.13	2.79
Trial 5	2.20	2.71

Live Trials

- 10 Milling Trials using energetic materials
 - 5 Trials 5% Wax; 95% RDX
 - 5 Trials 3% Wax; 2% DOA; 0.01% UV Tracer; 94.99% RDX
- Normally HSAAP utilizes slurry coating techniques to coat materials with wax or plastic
 - Due to use of drum coating in inert trials, it was decided to drum coat the live trials for consistency
 - Prepared in 1 pound increments and blended for milling trials
 - Samples tested prior to milling
 - Only one method of analysis
 - Gravimetric Extraction

Wax/RDX Live Trials (Input Coating)

- Input material prepared in 5 pound increments
- Drum coated and analyzed via extraction
 - Average = 4.42% Wax
 - Standard Deviation = 0.06
- Little variation from batch to batch

Wax/RDX Input Batch	% Wax
Batch 1	4.43
Batch 2	4.40
Batch 3	4.54
Batch 4	4.47
Batch 5	4.45
Batch 6	4.43
Batch 7	4.41
Batch 8	4.42
Batch 9	4.36
Batch 10	4.34

Wax/RDX Live Trials (Milling Trials)

- Milled in 5 Pound Increments
 - Feed Pressure = 80 PSI
 - Grind Pressure = 100 PSI
 - Feed Rate = 30 lb/hr
- Milling was problematic, multiple "blow back" events
 - Reduced feed rate to 20 lb/hr
- Material free flowing and unchanged after 24 hours in storage
- Analyzed via gravimetric extraction for wax content
 - Average = 4.73% Wax
 - Standard Deviation = 0.16
- Acceptable coating of RDX based on values

Wax/RDX Milling Trial	% Wax
Trial 1	4.52
Trial 2	4.63
Trial 3	4.73
Trial 4	4.89
Trial 5	4.89

Wax/DOA/Dye/RDX Live Trials (Input Coating)

- Input material prepared in 5 pound increments
- Drum coated and analyzed via gravimetric extraction with DMSO/Chloroform
 - Average = 2.27% DOA; 2.95% Wax
 - Standard Deviation = 0.05; 0.14
- Again variation from batch to batch but overall the RDX is coated with approximately 5% total coating

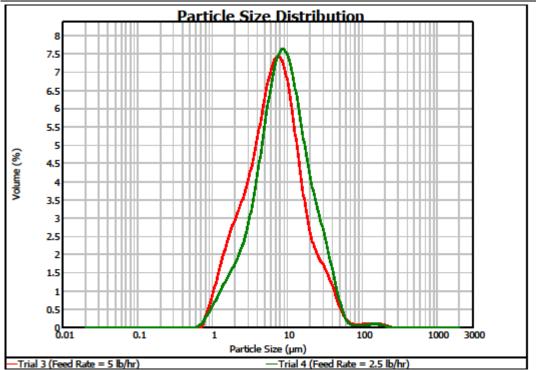
Wax/DOA/Dye/RDX Input Batch	% DOA	% Wax
Batch 1	2.20	3.00
Batch 2	2.28	3.18
Batch 3	2.28	3.06
Batch 4	2.24	2.85
Batch 5	2.23	2.91
Batch 6	2.23	2.99
Batch 7	2.36	2.99
Batch 8	2.30	2.64
Batch 9	2.35	2.95
Batch 10	2.26	2.93

Wax/DOA/Dye/RDX Live Trials (Milling Trials)

- Milled in 10 Pound Increments
 - Feed Pressure = 80 PSI
 - Grind Pressure = 100 PSI
 - Feed Rate = 10 lb/hr
- Based on milling of RDX/Wax the feed rate was reduced to 5 lb/hr
- Material continually compacted into the feed funnel similar to the inert Wax/DOA trials
 - However final product was soft and flowing even after 24 hours of storage
- Analyzed via gravimetric extraction
 - Average = 2.16% DOA; 2.72% Wax
 - Standard Deviation = 0.03; 0.06
- Acceptable coating of RDX based on values

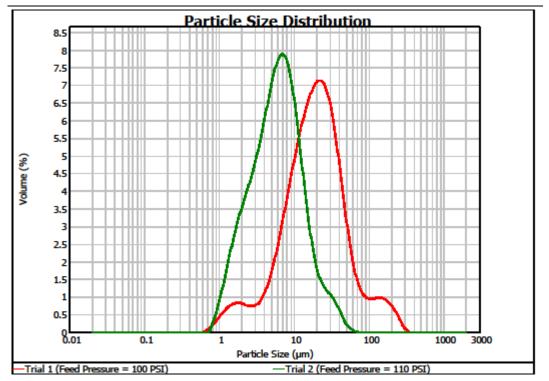
Wax/DOA/Dye/RDX Milling Trial	% DOA	% Wax
Trial 1	1.98	2.89
Trial 2	1.99	2.91
Trial 3	1.98	2.92
Trial 4	1.98	2.88
Trial 5	1.99	2.99

Optimization Trials (Target Particle Size)


- Optimize grinding operations to match particle size of 4µm FEM RDX
 - Vary Feed Rate, Feed Pressure, and Grind Pressure using RDX coated with 5% DOA
 - Analysis for DOA content and particle size distribution after extraction

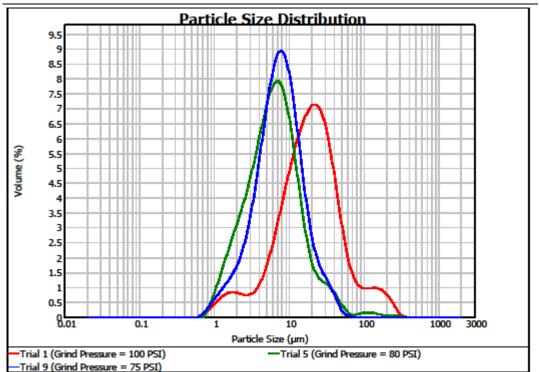
Sample ID	Feed Rate (Ib/hr)	Feed Pressure (PSI)	Grind Pressure (PSI)	10 th Percentile	50 th Percentile	90 th Percentile	DOA (%)
4µm FEM RDX				1.973	4.477	8.708	
Trial 1	5	100	100	5.235	19.172	59.164	4.66
Trial 2	5	110	100	1.911	5.956	16.654	4.95
Trial 3	5	110	110	2.027	6.869	21.139	4.92
Trail 4	2.5	110	110	2.709	8.702	25.632	4.88
Trial 5	5	100	80	2.045	6.231	17.193	4.83
Trial 6	5	110	110	2.345	7.268	20.769	4.74
Trial 7	5	100	80	2.398	5.730	14.110	4.69
Trial 8	5	100	75	2.859	7.590	18.931	4.64
Trial 9	5	100	75	2.693	7.408	18.143	4.80
Pilot Trial 1	5	100	80	3.052	8.346	20.079	4.71
Pilot Trial 2	5	100	80	2.814	8.935	27.274	5.03

Feed Rate (5lb/hr vs. 2.5lb/hr)


- Particle Size Analysis
 - Malvern Mastersizer 2000
 - Light Scattering Technique
- Changes made to feed rate
 - No real change in distribution
 - However neither sample matches 4µm FEM RDX target

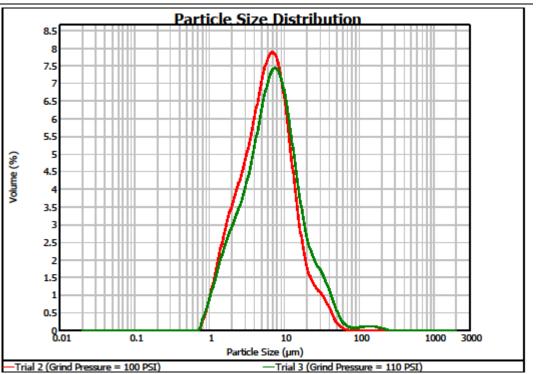
Feed Pressure (100 PSI vs. 110 PSI)

- Changes made to feed pressure
 - Lower pressure results in larger distribution
 - Neither matches 4µm FEM RDX

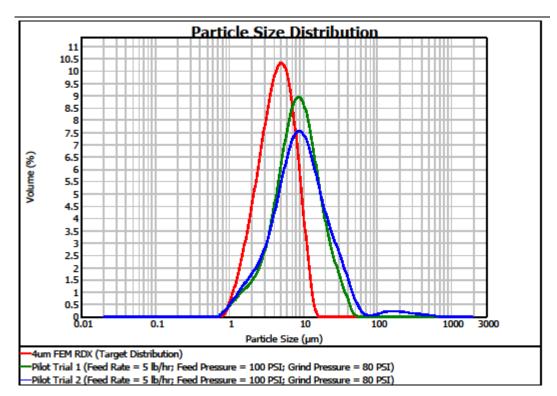


BAE SYSTEMS

Grind Pressure at 100 PSI (100 PSI vs. 80 PSI vs. 75PSI)


- Changes made to grind pressure at constant 100 PSI Feed Pressure
 - Best distribution when compared to FEM RDX is at 80 PSI
 - Again no matches to 4µm FEM RDX

Grind Pressure at 110 PSI (100 PSI vs. 110PSI)


- Changes made to grind pressure at constant 110 PSI Feed Pressure
 - Very similar distributions to each other
 - No match to 4µm FEM RDX
- At this point the upper limit of the compressor was reached
 - In order to maintain higher pressures, a larger compressor is planned to be installed to continue evaluations

Evaluation of Process – Pilot Trials

- Decision to evaluate lower feed pressure
 - Feed Rate = 5 lb/hr
 - Feed Pressure = 100 PSI
 - Grind Pressure = 80 PSI
 - 5 pound batch size
- Particle Size Analysis
 - Run to run was excellent, only small variation in distribution
 - Still did not match 4µm FEM RDX target

Conclusions and Future Work

- ACE-FEM demonstrated the ability to reduce the particle size while redistribution the coating
 - Inert trials result in similar coating content between milled material and input material
 - Live trials also result in similar coating values between milled and un-milled material, in some cases better coating with live material than inert
 - Some feed issues with DOA containing inputs
 - Changes in feed rates and or feeder type
 - Also did experience some "blow back" issues with live material
 - Possibly due to feeding
 - Optimization led to discovery that a different compressor was required to maintain higher pressure
- Future work on utilizing Scanning Electron Microscopy (SEM) to verify coating on surface with UV dye as well as different binder systems

BAE SYSTEMS

Acknowledgements

- BAE-OSI
 - Ms. Kelly Guntrum
 - Mr. Jim Haynes
 - Mr. Paul Lucas
- ARDEC
 - Mr. Fee Lee
 - Mr. Dale Conti
 - Mr. Timothy Jones
- NJIT
 - Mr. Costas G. Gogos
- PPI
 - Mr. Chunmeng Lu

Questions?

