

Demonstration of 1-Nitramino-2,3dinitroxypropane as an Energetic Plasticiser Component in an HMX-based PBX

<u>Mike Willcox¹</u>, James Padfield², Dan M^cAteer² mike.willcox@awe.co.uk, jpadfield.cu@defenceacademy.mod.uk, d.mcateer@cranfield.ac.uk

¹ AWE, ² Cranfield University, Shrivenham

- Introduction
 - Background
 - Aims of work
- Experimental Work
 - Synthesis
 - Binder formulation
 - Binder testing
- Formulation with HMX
 - Performance calculations
 - Explosive hazard test data
- Conclusions
- Future Work

Background – 1-Nitramino-2,3-dinitroxypropane (NG-N1)

- Research into energetic binder systems for high powered PBXs
- Literature search revealed work on NG-N1*
- Stimulated interest in use as high energy plasticiser component
 - Physical properties
 - Crystalline solid 1.799 g/cc, melting pt. 66°C
 - Readily forms waxy consistency when impure or when mixed

 ONO_2

 ONO_2

- High performance
 - V of D. 8.8 km / s (calculated)
 - Energy 10.7 kJ/cc
- Good hazard properties
 - BAM impact 14 J. (NG 0.2 J, RDX 7 J)
 - BAM friction 96N (RDX 120)
 - OZM Spark 1.1 J (RDX 0.1-0.2 J)

* Altenburg, Klapötke and Penger, Central European Journal of Energetic Materials, pp 255-275 (2009).

 O_2N

Aims of work

- Investigate feasibility of NG-N1 as a plasticiser ingredient – mix with a second component
 - Comparison with K10
 - K10 is a mixture of di- and tri-nitro ethylbenzene (DNEB and TNEB)
- Produce an energetic binder system
 - Use plasticiser to form gel with nitrocellulose
- Formulate chosen binders with HMX
 - Hazard test and measure performance

- Simple synthesis from affordable starting materials
- Recrystallisation from chloroform required to purify NG-N1 (4) from ethyl carbamate formed in the final step
- Yield dependent upon the efficiency of distillation in the synthesis of 2
- Overall yield of 29 % obtained

Energy of plasticiser mixes

Calculated energy of mixtures with DNEB or ButyINENA

Binder Formulation

- Plasticisers: NG-N1 mixed (in solution) with either DNEB or Butyl NENA
- Experimentation carried out to investigate achievable loadings of NG-N1
- Solution of Nitrocellulose (~12% N) added to plasticisers at a ratio of 1:8 (NC : Plasticiser) - found to produce gel consistency
- Proportional amount of ethyl centralite stabiliser added
- Energy of Optimised Plasticiser mixes.
 - NG-N1/DNEB 33.3 / 66.6 wt% 6.05 kJ/cc
 - NG-N1/BuNENA 40 / 60 wt%
 - NG-N1/BuNENA 50 / 50 wt%
 6.5 kJ/cc (for comparison)
 - K10 (TNEB/DNEB) 35 / 65 wt%
 - BDNPA/F

5.3 kJ/cc 6.6 kJ/cc

6.06 kJ/cc

NC/NG-N1/DNEB

 Several weeks after mixing, precipitation of NG-N1 observed in DNEB binder. Solvent evaporation? Limited miscibility?

Binder Properties

		Density	Energy
	Tg	(g/cc)	(kJ/cc)
Binder	(°C)	(Measured)	(Calculated)
NC + K10	-65.2	1.400	4.993
NC + NG-N1 / DNEB	-60.3	1.428	5.549
(33.3 / 66.6)			
NC + NG-NG / BuNENA	-64.1	1.379	5.915
(40 / 60)			
NC + NG-NG / BuNENA	-62.6	1.408	6.155
(50 / 50)			

DSC decomposition

Formulation with HMX

- Selected binders formulated with HMX
- Intended to use constant <u>VOLUME %</u> of binder
 - Ensures any differences between formulations (especially hazard properties) are a direct result of change in binder system
 - HMX / NC K10 Formulation 91 : 9 weight % HMX : binder
 - Exact composition of others adjusted to keep constant vol% of HMX

Explosive performance (calculated - Cheetah V4)

	0.00	0.07	0.70
- P of D (GPa)	32.2	33.2	33.8

Charges pressed

- V of D (km/s)

 Plate dent tests planned for initial comparison of formulations – firing results not yet available

Powder hazard test results

Test	HMX / NC / K10	HMX / NC / NG-N1 / BuNENA (40:60)	HMX / NC / NG-N1 / BuNENA (50:50)
BAM Impact (50% method; EMTAP Test 43B)	7.7 J (s.d. 0.12 J)	6.2 J (s.d. 0.04 J)	6.0 J (s.d. 0.09 J)
Rotary Friction (EMTAP Test 33)	3.7	2.8	2.7
Electric Spark Test (EMTAP Test 6)	Ignites at 4.5 J; No ignitions at 0.45 J	Ignites at 4.5 J; No ignitions at 0.45 J	Ignites at 4.5 J; No ignitions at 0.45 J
Isothermal TGA (15hrs at 100°C)	-2.9% mass loss	-2.8% mass loss	-2.5% mass loss

Conclusions

Binder Studies

- NG-N1 / ButyINENA mix successful in gelatinising NC
 - Glass transition temperature comparable to NC / K10
 - Energy of binder system exceeds NC / K10
- NG-N1 / DNEB mix successful in gelatinising NC
 - Issues with phase separation in proportions studied

HMX formulations

- Calculated performance data shows noticeable performance increase in pressure and velocity of detonation
- NG-N1 containing compositions show increased impact and friction sensitivity over NC-K10 binder system

Further work

To finish current study

- Measure explosive performance properties of formulations
 - Plate dent and rate stick tests intended
- Potential future work with NG-N1:
 - Revisit NG-N1/DNEB binder system
 - Measure / optimise mechanical properties of binder systems
 - Investigate alternative energetic liquids to Butyl NENA and DNEB
 - Study miscibility of NG-N1 with alternative energetic polymers/binders, e.g. polyNIMMO, polyGLYN
 - Potential applications in propellants as NG alternative

Questions