Development and Evaluation of Granular Insensitive Melt Pour Explosives

NDIA Insensitive Munitions & Energetic Materials Technology Symposium 2012

Alberto Carrillo* BAE SYSTEMS OSI, Holston Army Ammunition Plant

Topics of Discussion

- Insensitive Melt Pour Explosives
- Thermal Evaluations of DNAN in Water
- Water Based Slurry Coating Trials
- Alternate Fluid Based Slurry Trials
- Pressing Evaluation
- Scale Up of Baseline Process
- Performance Testing
- Conclusions and Future Work

Insensitive Melt Pour Explosives

- Provide Insensitive replacements for TNT based explosives with similar performance
 - IMX-101 Insensitive replacement with comparable performance to TNT
 - IMX-104 Insensitive replacement with comparable performance to Composition B
 - Both currently qualified for use as main fill explosives
- Contain non-traditional ingredients

Thermal Evaluations of DNAN in Water

- DNAN and 1:1 DNAN:Water analyzed via DSC to compare melting point
- No effect seen other than a broadening of the melt peak

- DNAN melted in water and then allowed to solidify in granular form
- Analyzed using DSC for melting point comparisons
- No effect seen on melt temperature or peak

Water Based Slurry Coating Trials

Percent Deviation from Target – Water Based Trials						
Ingredient	Trial 1	Trial 2	Trial 3	Trial 4		
DNAN	-79.49	85.17	89.27	104.42		
RDX	-75.16	101.96	91.50	105.88		
ΝΤΟ	74.34	-76.42	-80.94	-93.77		

- Percent Deviation from Target Screen Fractions **Batch ID** Trial 3 Trial 4 #8 #325 #8 #325 Screen DNAN 99.05 -0.03 104.73 -65.30 RDX 103.27 -24.84113.07 -64.70NTO -92.08 -2.64 -98.11 57.36
- Utilized excess NTO or NTO Saturated water to overcome solubility of NTO in water
- Trial 1 DNAN stuck to vessel High NTO
- Trial 2 Segregated materials Low NTO
- Trial 3 Segregated materials Low NTO
- Trial 4 Segregated materials Low NTO
- NTO re-crystallizes after DNAN solidification in granules

- Screen fractions confirm segregation of material
- #8 Coarse High DNAN\Low NTO
- #325 Fine Low DNAN\High NTO
- Due to delayed re-crystallization of dissolved NTO water based trials were put on hold in favor of alternate processes

Alternate Fluid A Based Slurry Coating Trials – Overview

- Alternate Fluid A is a fluorinated hydrocarbon which has similar properties to water and can be used in a place of water in multiple applications
 - Successfully used in the manufacture of aluminized PBX's at HSAAP
- Utilized laboratory coating still and standard slurry coating techniques
 - Allows for use of existing manufacturing infrastructure for scale up

Alternate Fluid A Based Slurry Coating Trials – Analysis

- Composition compared using percent deviation from target
 - DNAN allowed ± 6.31% deviation
 - RDX allowed ± 12.74% deviation
 - NTO allowed ± 4.65% deviation
- Trial 5 and Trial 6 have acceptable composition, melting point, and exothermic onset values
 - Comparable to standard IMX-104
- Bulk Density greater than 0.9 g/cc
- Granulation is consistent between
 Trial 5 and Trail 6
- However poor yield due to low boiling point of Alternate Fluid A

Batch	ID	Production IMX-104	Trial 5	Trial 6
DNAN (% Deviation	on from target)	5.04	-2.84	-0.95
RDX (% Deviatio	n from target)	1.31	-3.27	-3.26
NTO (% Deviatio	n from target)	-2.26	2.45	1.32
Melting Po	oint (ºC)	92.1	93.4	92.9
Exothermic Onset (ºC)		208	210	207
Bulk Density (g/cc)			0.926	0.962
Screens (% Pass)	4		100	98.3
	8		76.7	74.8
	12		37.9	47.7
	40		0.8	5.6
	80		0.8	4.1
	100		0.6	3.7
	200		0.3	2.3
	325		0.1	1.3

Alternate Fluid A Based Slurry Coating Trials – TGA Scan

Alternate Fluid A vs. Alternate Fluid B

Property	Units	Alternate Fluid A	Alternate Fluid B
Appearance		Clear; Colorless	Clear; Colorless
Average Molecular Weight	g/mole	438	521
Boiling Point	٥C	101	128
Vapor Pressure	Кра	3.870	1.440
Liquid Density	g/ml	1.77	1.82
Absolute Viscosity	Ср		1.4

- Alternate Fluid A cannot exceed 92°C which does not fully melt DNAN
- Alternate Fluid B selected due to higher literature value for boiling point
 - Similar in other physical properties

Alternate Fluid B Based Slurry Coating Trials – Overview

- Used established process from Alternate Fluid A based trials
 - Higher boiling point of Alternate Fluid B resulted in improved yield values
- Varied agitation rate to observe changes in particle size distribution
 - Ranged from 37.5% of maximum to 100% of maximum
- Analysis of resulting batches is promising
 - Meet specification for composition and thermal properties
 - Bulk density is high
 - Granulation did change with agitation rate

Alternate Fluid B Based Slurry Coating Trials – Analysis

Batch ID		Trial 7	Trial 8	Trial 9	Trial 10	Trial 11	Trial 12
Agitation Rate (% of Maximum)		37.5	50	62.5	75	87.5	100
Yield (%)		59.78	61.02	68.30	67.58	75.02	70.38
DNAN (% Deviation fro	m target)	-1.26	-3.78	-1.26	-1.89	-4.10	-3.78
RDX (% Deviation from target)		-2.61	-11.76	-8.49	-5.22	-3.92	-6.53
NTO (% Deviation from target)		-0.75	4.53	2.45	0.75	2.64	3.39
Melting Point (°C)		95.5	96.4	96.6	94.9	92.0	91.7
Exothermic Onset (ºC)		203	207	210	219	204	220
Bulk Density (g/cc)		0.926	0.885	0.962	0.926	0.962	0.961
Screens (% Pass)	4	92.5	98.2	98.8	99.0	100	98.5
	8	24.5	49.0	58.5	69.0	83.0	76.5
	12	7.0	15.3	24.2	37.5	57.5	51.1
	40	0.1	0.7	1.6	2.3	3.2	2.0
	80	0.0	0.5	1.4	1.6	1.9	1.1
	100	0.0	0.4	1.2	1.4	1.3	1.1
	200	0.0	0.1	0.4	0.3	0.4	0.6
	325	0.0	0.0	0.0	0.0	0.0	0.3

BAE SYSTEMS

Alternate Fluid B Based Slurry Coating Trials – Granulation

- Effect on granulation is observed with changes in agitation
- Slower agitation rates result in larger particle sizes
 - 37.5% 2400µm
 - 100% 400µm
- Distributions are still very broad
 - Further work is required to optimize granulation

BAE SYSTEMS

Alternate Fluid B Based Slurry Coating Trials – Granulation

- Comparison of Granular IMX-104 to typical granulated product at HSAAP
- Largest and Smallest distributions compared to PAX-2 (Laboratory and Production)
 - 37.5% larger than PAX-2
 - 100% similar to PAX-2
- Promising result
 - Can make granular melt pour at similar particle sizes to other granular explosives

Pressing Evaluation – Overview

- Performed a small screening effects designed experiment (DOE)
 - Two different diameter die sets
 - 1" and 1.5"
 - Varied pressing force and sample mass
 - 3000 pounds to 20000 pounds
 - 1" Die 20 grams to 30 grams
 - 1.5" Die 20 grams to 50 grams
- Want to observe the density of the resulting pellet using granular IMX-104
 - IMX-104 melt casted
 - Density values from 1.70 g/cc to 1.72 g/cc
 - 1" Die Set
 - Density values from 1.66 g/cc to 1.72 g/cc
 - 1.5" Die Set
 - Density values from 1.63 g/cc to 1.70 g/cc

Pressing Evaluation – Results

- 1" Die Set
- Density is independent of mass completely dependent on load
 - 3000 lbs = 1.66 g/cc
 - 115000 lbs = 1.70 g/cc
 - 20000 lbs = 1.72 g/cc

- 1.5" Die Set
- Maximum density at higher load but dependent on mass
 - Less mass results in higher density
 - 20 grams = 1.71 g/cc
 - 50 grams = 1.69 g/cc

Scale Up of Baseline Process – Overview

- Baseline process from trials in Alternate Fluid B was selected and scaled to a two pound scale
 - 5 replicates prepared and blended for use in performance testing
 - Each replicate tested individually for composition, thermal properties, bulk density, and granulation
- Analysis yielded promising results
 - Replicates all meet specification for composition and thermal properties
 - Bulk densities are similar (greater than 0.9 g/cc)
 - Variation in granulation from batch to batch is small
 - Approximately 90% yield of product overall

Scale Up of Baseline Process – Analysis

Batch ID		Trial 13	Trial 14	Trial 15	Trial 16	Trial 17	Blend
Yield (%)		83.30	97.73	85.63	94.06	95.44	90.25
DNAN (% Deviation fro	om target)	-2.08	1.97	-3.40	-1.07	-0.87	-0.42
RDX (% Deviation from	n target)	0.64	-4.56	-3.59	-0.95	-6.06	-5.71
NTO (% Deviation from target)		0.47	-0.89	2.87	0.42	1.98	1.98
Melting Point (^o	Melting Point (°C)		91.36	91.93	91.72	91.71	92.01
Exothermic Onset	Exothermic Onset (°C)		206	198	209	213	216
Bulk Density (g/cc)		0.9091	0.9259	0.9434	0.9615	0.9259	0.961
	4	93.9	91.5	95.2	91.1	90.8	95.4
	8	44.8	38.7	54.8	46.6	44.6	55.8
Screens (% Pass)	12	22.6	21.4	33.5	27.4	24.5	31.4
	40	0.5	1.8	2.2	6.4	3.1	4.0
	80	0.4	1.4	1.6	5.4	2.7	2.4
	100	0.4	1.3	1.5	5.1	2.6	2.1
	200	0.3	0.9	1.0	3.1	1.8	0.7
	325	0.1	0.5	0.5	1.0	0.9	0.2

Scale Up of Baseline Process – Granulation

- Each replicate manufactured in the scale up exercise is similar in granulation
- Larger than desired but usable
 - Average particle size is 1000µm
 - Still broad distribution
- Further work is required to optimize granulation

Performance Testing

 Material from scale up trials pressed into pellet form for use in LSGT evaluation against poured charges of standard IMX-104

Sample ID	Units	IMX-104 (Standard)	IMX-104 (Granular)
Charge Density	g/cc	1.72	1.69
Number of Shots		9	8
50% Point	cards	125	156
Kilobar Value	kbar	48.8	36.3

- Average charge density of 1.69 g/cc (95% TMD)
- Average charge density for poured material of 1.72 g/cc (97% TMD)
- Difference in sensitivity partially due to difference in charge density
- Still less sensitive than Composition B (201 220 cards; 16.9 20.5 kbar)
- Evaluation of detonation velocity and shockwave pressure scheduled for week of April 30, 2012

Conclusions and Future Work

- Water based process not viable due to solubility of ingredients in water
 - Disparity in temperature that NTO re-crystallizes from water causes segregation of NTO from other components
- Process based in alternate fluids has been successful in manufacturing granular versions of IMX-104
 - Meet specification for composition with no change in thermal properties
 - Some evidence that granulation can be controlled but requires additional evaluation
 - Pressing evaluation indicates that equivalent pressed densities to poured material can be achieved
 - LSGT value not significantly effected by granulation process
 - Utilizes existing manufacturing infrastructure at HSAAP
 - Additional work is required to determine scale up to manufacturing scale

Acknowledgements

- Mr. Matt Hathaway
- Mr. Jeremy Headrick
- Ms. Kelly Guntrum
- Ms. Robyn Wilmoth

Questions?

