

A Safe and Effective Method To Remotely Mix Small Quantities of Energetic Compositions

Prepared by:

Brad Cragun & Paul Braithwaite

Prepared for:

2012 NDIA Insensitive Munitions / Energetic Materials Symposium

Las Vegas, Nevada May 14-17, 2012

Acknowledgements

- Project team consisted of the following:
 - Investigators: Brad Cragun, Paul Braithwaite
 - Technicians: Dean Child, Colton Potter, Marc Hall
- Formulating, mixing, and testing all performed at ATK facilities in Promontory, Utah

Background & Introduction

- Hand mixes of small quantities of new energetic formulations have traditionally been made for safety screening as part of the scale-up process for new formulations.
 - Operators directly exposed to live materials
 - Mixing may be inadequate or inhomogeneous
 - Reproducibility varies from operator to operator or within the same mix series.
- Remote mixing of small, safety screening sized mixes provide the following:
 - Improved safety
 - Thorough mixing
 - Reproducibility
 - Improved efficiency

New Energetic Formulation Development

- Begins with individual and binary DSC compatibility testing.
- Transitions to small scale (~10 gram) mixes
 - Requires the evaluation of:
 - New ingredients
 - New particle sizes
 - Different combinations of ingredients
 - New methods of combining materials
 - Analogous mixing/processing methods intended for larger mixersBegins
- Early information gathered includes:
 - Processibility:
 - ✓ First look at binder-filler interactions
 - √ Ball park viscosity
 - Laboratory handling safety data:
 - ✓ Friction
 - ✓ Impact
 - ✓ ESD
 - √ Thermal Stability

Mixer Acquisition Background

- Corporate safety audit suggested to look into alternatives to hand mixing.
- Previous small scale mixers did not provide consistent quality.
- Centrifugal mixer identified.
 - Advantages of:
 - No blades
 - Mixes made and delivered in the same cup
 - No (or very minimal) clean up
 - Ease of remote operation
 - Mixes follow same order of addition as likely scale up mixes
 - Minimal facility requirements
 - Minimal air entrainment in sample
 - Relatively easy to move (portable)
 - Low preventive and ongoing maintenance costs
 - 5 100 gram sample weight capability
 - Mixing does not generate an explosive atmosphere

Centrifugal Mixer Setup

Mixing Motion Within the Cup

Vertical Motion

Horizontal Motion

Flow motion is down the walls of the cup and up the middle

Mixing at the 10-Gram Cup Scale

Considerations

- ➤ Ingredient densities
 - √ Volumetric loading considerations
- ➤ Potential heat generation
 - ✓ Bulk density
 - √ Formulation detail
 - Percent dry ingredients
 - Percent solid ingredients
- ➤ Precision requirements
 - √ Need adequate balances
 - Associated with small batch size

Temperature Response in Filled and Un-filled Systems

Profiling a Formulation

Hand Mixing vs. Remote Mixer Processing

	Mixing Process	
Metric	Traditional Hand Mixing	Remote Speed Mixer
		Minor disadvantage - small capital
Capital equipment	Advantage - no capital required.	investment needed.
	Neutral - low cost vials and spatulas.	Neutral - low cost vials and spatulas.
Process equipment	Laboratory hood (formulation dependent.)	Laboratory hood (formulation dependent.)
Personel protective	Neutral - standard laboratory coats,	Neutral - standard laboratory coats and
equipment	protective eyeware and portable shields.	protective eyeware.
	Slight disadvantage - mixing process is	Advantage - mixing process is remote which
Operator exposure	attended and has higher exposure.	minimizes operator exposure.
	Disadvantage:	Advantage:
	No deaeration	Mixing naturally deaerates
Mix quality and	 Quality depends on skill of technician 	Reproducible/not operator dependent
Reproducibility	 Poorly coated solids are likely 	 Vigorous mixing leads to well coated solids
	Disadvantage - Non-homogeneous samples	Advantage - more homogeneous samples
	can produce erratic safety test results and	produce representative safety data and
Reliability of mix	misleading processing information.	processing results.

Lessons Learned

Multiple Formulation Types Screened:

- Cast-cure
- ➤ Dry blend
- > Pressed
- ➤ Melt-pour

Process works best with cast cure & dry blend

Frictional heating can be substantial for some compositions:

- ➤ Dry blends
- ➤ High density
- Heating effects can be minimized by mixing for short time periods with short delays between mixing periods.

Summary & Conclusions

- Remote processing of small safety screening sized samples of energetic materials have been demonstrated to be safe and efficient.
 - Homogeneity, reproducibility, and ergonomics are improved over hand mixes.
 - Applicable to a range of formulation types
 - Minimal clean-up
 - Relatively easy installation
- Evaluation of new mixing technology is an ongoing initiative which has produced substantial improvements