

Predictive Modeling of LSGT Performance Results for Composition C-4 Utilizing Physical Properties of Input Materials (Abstract # 13893)

NDIA Insensitive Munitions & Energetic Materials Technology Symposium 2012

BAE SYSTEMS OSI, Holston Army Ammunition Plant

Andrew D. Smith RDECOM-ARDEC, Rock Island Arsenal

Acknowledgement

- RDECOM-ARDEC
 - Mr. Andrew D. Smith
 - Mr. Michael Mauriello
 - Ms. Maria Bukowska
- BAE SYSTEMS OSI
 - Mr. Benjamin Schreiber
 - Dr. Jeremy Headrick
 - Ms. Kelly Guntrum
 - Ms. Robyn Wilmoth
 - Mr. Matt W. Hathaway

Presentation Outline

- Predictive Modeling of LSGT Performance Results for Composition C-4 Utilizing Physical Properties of Input Materials
 - Background
 - Program Objectives
 - Technical Approach
 - Analysis and Evaluation
 - Summary
 - Future Work
 - Conclusion

Composition C-4 - Background

- Composition C-4 is a white plastic-bonded explosive material that can be molded and shaped by hand
- Composition C-4 is a legacy explosive formulation with decades of use.
 - ~ 90.5% RDX
 - Specific ratio of coarse to fine RDX. (3:1, Class 1 to Class 5)
 - ~ 9.5% plastic binder
 - High molecular weight polyisobutylene (PIB)
 - Dioctyladipate (DOA)
 - Lightweight process oil (Oil)

Composition C-4 - Background

- Due to its exceptionally high brisance characteristics, Composition C-4 is mainly used for demolition purposes
 - M112 Demolition Charge
 - M183 Demolition Kit
 - MICLIC
 - M18A1 Claymore Mine
- Composition C-4 is extruded to generate the M112 Demolition Charge
 - The M112 Demolition Charge should be moldable / pliable

Composition C-4 Phase I – Program Objectives

- Composition C-4 Phase I Production Process Analysis and Optimization Design of Experiments (DOE) was conducted to identify the sources of variability in bulk Composition C-4 and define the process inputs, procedures and metrics that can predict and produce repeatable and consistent bulk Composition C-4 for M112 Demolition Charge extrusion rate
- Analyses of the Phase I data results and in-process record sheets were conducted by the Six Sigma team members to determine the factors and levels for the Phase II Six Sigma C-4 Optimization DOE

Distribution Statement A: Approved for Public Release; Distribution is unlimited. Non Export Controlled. Releasable to Foreign Persons. S2DSEA2012-0180

Composition C-4 Phase II – Program Objectives

- From the knowledge gathered during the first phase of the Six Sigma Composition C-4 Optimization DOE, the DOE team determined the three critical parameters in the C-4 manufacturing process
- The Phase II Composition C-4 Process DOE was based on a full factorial design and takes into account the three critical parameters affecting extrusion rate; Drying Cycle Drop Point, RDX particle size, and Virgin / Recovered RDX
- Previous knowledge from BAE Systems and ARDEC indicated the likely major factors affecting the Large Scale Gap Test (LSGT) sensitivity are as follows:
 - RDX particle size
 - RDX particle shape and morphology
 - Binder coating on RDX particles
 - Air gaps in LSGT Sample
 - Impurities in RDX from HMX
 - Density of LSGT Sample

Composition C-4 LSGT – Technical Approach

- The LSGT is the standard test method to evaluate the shock sensitivity of energetic materials.
- Procedure: The test is conducted where a polymethylmethacrylate (PMMA) attenuator is placed between a donor explosive (pentolite; 50% PETN/50%TNT) and an acceptor explosive (Composition C-4). The attenuator (card) gap is varied following a modified Bruceton Staircase technique until detonation is achieved in a 50% probability. The thickness of the card gap at that point can be translated into shock pressure. The lower the 50% card gap, the lower its shock sensitivity.
- The testing at HSAAP utilizes a witness plate support structure that consists of a 6" long, 7" OD, 1" thick steel tube that is buried in the sand/soil floor on top of a thick steel plate in a covered test area at an outdoor range. A 9" witness plate is approximately centered on the steel support tube. This presents a 3" stand off from the floor to the witness plate with the witness plate supported 360 degrees.

Composition C-4 LSGT - Testing Pictures

- During analysis, a large variation in the LSGT result was noticed – 150.0-177.5 card gap difference
 - Looked into the reasoning why
- Initial Development:
- Weight-averaged particle size distribution for the RDX used in Composition C-4 and the results of the LSGT analysis
 - Using only the screen analyses for the RDX inputs and crossed effects of the screen analyses
 - Ignoring all processing variables from the production process
 - The 50 screen, 100 screen, and 200 screen and their crossed effects were used to develop a regression model
- Looking for:
 - R² value > 80 %
 - Regression P-value < 0.05

Regression Equation

Coefficients

Term	Coef	SE Coef	Т	P
Constant		73678.1	1.12387	0.463
50		2391.5	-0.46326	0.724
100		7803.5	0.67521	0.622
200		12708.7	-0.65920	0.629
50 x 50		27.3	0.98190	0.506
50 x 100		27.2	-2.34988	0.256
50 x 200		147.5	0.12072	0.924
100 x 100		75.3	1.39333	0.396
100 x 200		398.4	-0.77882	0.579
200 x 200		371.6	0.83027	0.559

Summary of Model

S = 1443.42	R-Sq = 96.95%	R-Sq(adj) = 69.50%
PRESS = 13601677139	R-Sq(pred) = -19813.41%	

- Second Development:
- Remove the component with the highest P-value (so long as it is above 0.05) and re-running the regression model
- This iterative process is repeated until all components have a P-value less than or equal to 0.05
- R² value 89.7 %
- Regression P-value < 0.05
- Four data points in the model stand out as being different and having an assignable cause. (Higher negative residual)
 - Dried to higher temperature than normal (DOE Variable)

Regression Equation

LSGT^2 = A+B*(50x50)+C*(50x100)+D*(100x100)

Coefficients

Term	Coef	SE Coef	Т	P
Constant		775.458	28.6955	0.000
50 x 50		5.407	4.6508	0.002
50 x 100		14.830	-4.3713	0.003
100 x 100		10.059	4.1880	0.004

Summary of Model

S = 1002.67	R-Sq = 89.70%	R-Sq(adj) = 85.28%
PRESS = 18139486	R-Sq(pred) = 73.44%	

Analysis of Variance

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Regression	3	61266661	61266661	20422220	20.3135	0.0007839
50 x 50	1	24185508	21745869	21745869	21.6301	0.0023396
50 x 100	1	19448051	19210499	19210499	19.1082	0.0032689
100 x 100	1	17633102	17633102	17633102	17.5392	0.0040963
Error	7	7037465	7037465	1005352		
Total	10	68304125				

Fits and Diagnostics for All Observations for Transformed Response

Obs	LSGT^2	Fit	SE Fit	Residual	St Resid
1	27722.3	26639.0	635.962	1083.28	1.39745
2	23562.3	23030.1	463.996	532.18	0.59873
3	26406.3	26157.7	939.127	248.58	0.70765
4	24492.3	23539.7	510.341	952.56	1.10368
5	26732.3	27034.6	601.097	-302.34	-0.37674
6	23104.0	24531.5	401.426	-1427.51	-1.55365
7	23409.0	24255.8	630.881	-846.77	-1.08654
8	22500.0	23574.1	416.245	-1074.10	-1.17750
9	24964.0	24737.1	373.626	226.89	0.24385
10	24492.3	23755.1	383.568	737.12	0.79568
11	31506.3	31636.1	937.448	-129.89	-0.36513

- Third Development
- Use 'Drying Type' as a categorical component in the evaluation
- Eliminate all components that have a Pvalue less than or equal to 0.05
- R² value 99.1 %
- P-value < 0.05
- Four components were found as being significant factors
 - 50 screen X 50 screen
 - 100 screen X 100 screen
 - 50 screen X 100 screen
 - Drying type

J	
Regression E	quation
Drying Type Normal	LSGT^2 = A+B*(50x50)+C*(50x100)+D*(100x100)
Overdry	$LSGT^2 = E+F^*(50x50)+G^*(50x100)+H^*(100x100)$
Coefficients	
Term Constant 50 x 50 50 x 100 100 x 100 Druing Tupo	Coef SE Coef T P 261.330 82.7638 0.000 1.910 9.8872 0.000 5.246 -9.0560 0.000 3.559 8.5306 0.000
Normal	111.696 7.8664 0.000
S = 321.984 PRESS = 2345 Analysis of 7	R-Sq = 99.09% R-Sq(adj) = 98.48% 731 R-Sq(pred) = 96.57% Variance
Source	DF Seq SS Adj SS Adj MS F H
Regression 50 x 50	4 67682084 67682084 16920521 163.210 0.000003 1 24185508 10134774 10134774 97.757 0.0000618
50 x 100	1 19448051 8502308 8502308 82.010 0.000101
100 x 100 Drving Tvp	1 17633102 7544457 7544457 72.771 0.0001422 e 1 6415423 6415423 6415423 61.881 0.0002234
Error	6 622041 622041 103674
TOTAL	10 68304125
Fits and Dia	gnostics for All Observations for Transformed Response
Obs LSGT ² 1 27722.3 2 23562.3 3 26406.3 4 24492.3 5 26732.3	Fit SE Fit Residual St Resid 27797.4 251.779 -75.135 -0.37436 23598.1 165.576 -35.841 -0.12979 26316.4 302.252 89.804 0.80918 24010.8 174.483 481.459 1.77917 26342 9 212 109 389 305 1 60706
S 20732.3	20372.7 212.107 307.303 1.00700

-0.82822

-1 26052

-0.08276

-0.63582

0.08327

21.459

-23.284

-72.484

23409.0 23604.6 218.851 -195.605

24515.5 156.575

31578.7 301.127

25328.5 141.590 -364.519

22500.0 22478.5 193.036

24964.0

31506.3

24492.3

10

- Predicted LSGT result versus the observed LSGT result
- One data point at a higher LSGT result that may be driving the regression model

•

Composition C-4 Modeling – Analysis and Evaluation

Investigate if the higher data point	Regression Equation					
has a significant effect on the overall model	Drying Type Normal I	SGT^2 = A+B*(50x50)+C*(50x100)+D*(100x100)				
After Removal of data point from data set and repeat of regression	Overdry I	SGT^2 = E+F*(50x50)+G*(50x100)+H*(100x100)				
analysis:	Coefficients					
 R² value - 97.8 % P-value < 0.05 	Term Constant 50 x 50 50 x 100 100 x 100 Drying Type Normal Summary of Moo S = 340.626 PRESS = 362187	Coef SE Coef T P 276.466 78.2284 0.000 4.213 5.0100 0.004 11.223 -4.7557 0.005 7.420 4.6097 0.006 118.405 7.3824 0.001 Mel R-Sq = 97.82% R-Sq(adj) = 96.083 9 R-Sq(pred) = 86.42%	0/0			
	Analysis of Va Source Regression 50 x 50 50 x 100 100 x 100 Drying Type Error Total	DF Seq SS Adj SS Adj MS F 4 26084799 26084799 6521200 56.2047 1 12305793 2912208 2912208 25.0997 1 2033469 2624080 2624080 22.6163 1 5422234 2465517 2465517 21.2497 1 6323303 6323303 6323303 54.4991 5 580129 580129 116026 9 26664928				

Ρ

0.0002406 0.0040699 0.0050789 0.0057889 0.0007170

- Predicted LSGT result versus the observed LSGT result
 - The data point at 177.5 cards falls within the predictive model developed without that data point. Therefore, it is acceptable to include this data point in developing the regression model because it does not have an influence that manipulates the results

- Two evaluations are conducted to determine if the regression model is skewed at any data level.
 - Performed an Anderson Darling analysis to determine if the residuals are normally distributed
 - P-value must be > 0.05
 - Resulted with Anderson-Darling P-Value of 0.216
 - Fitted Line Plot of the residual versus the observed LSGT result
 - P-value must be > 0.05
 - Resulted with P-Value of 0.741

Composition C-4 Modeling – Summary

Predictive Model Equation:

$LSGT_{PRED} = \sqrt{A+B^{*}(50x50)+C^{*}(50x100)+D^{*}(100x100)}$

This equation can be utilized for prediction of LSGT results for Composition C-4 that has been dried in a "normal" fashion at HSAAP. This model was based exclusively on Composition C-4 made with Vistanex PIB binder.

Distribution Statement A: Approved for Public Release; Distribution is unlimited. Non Export Controlled. Releasable to Foreign Persons. S2DSEA2012-0180

Composition C-4 Modeling – Summary

Actual vs. Predicted using Predictive Modeling Equation

Batch	50	100	200	LSGT	Drying Type	Pred LSGT	Residual
C403-7921				166.5	Normal	166.7	-0.2
C403-R7923				153.5	Normal	153.6	-0.1
C403-R7929				162.5	Normal	162.2	0.3
C403-7932				156.5	Normal	155.0	1.5
C403-7920				163.5	Overdry	162.3	1.2
C403-R7922				152.0	Overdry	152.7	-0.7
C403-R7930				153.0	Overdry	153.6	-0.6
C403-7931				150.0	Overdry	149.9	0.1
C403-R7999				158.0	Normal	159.1	-1.1
C403-8012				156.5	Normal	156.6	-0.1
C403-8014				177.5	Normal	177.7	-0.2

Composition C-4 Modeling – Future Work

- Future Composition C-4 will be made with Oppanol PIB binder vs. Vistanex PIB
- Repeat the Modeling development for Composition C-4 made with Oppanol PIB binder
- Utilize the process/parameters in Phase I and II of the six sigma project to predict how Composition C-4 will extrude
- Analyze how other likely major factors may influence the LSGT Results
 - RDX Particle Size
 - Particle Morphology
 - Binder coating on RDX particles
 - Air gaps in LSGT Sample
 - Impurities in RDX from HMX
 - Density of LSGT Sample

Successfully demonstrated that the LSGT can be predicted for Composition C-4 based on:

RDX Particle Size with R² value - 97.8 %

Questions?

Distribution Statement A: Approved for Public Release; Distribution is unlimited. Non Export Controlled. Releasable to Foreign Persons. S2DSEA2012-0180 BAE SYSTEMS

- Anderson-Darling
 Analysis
- The normality of the residuals (defined as the observed LSGT result minus the predicted LSGT result) for the predicted LSGT results compared to the Observed LSGT results
- P-value > 0.05, therefore the residuals are normally distributed

- Fitted Line Plot
- Determine if the regression model is skewed at any data level is the fitted line plot of the residual versus the observed LSGT result
- No statistical trend seen in the residual of the Predicted LSGT result when plotted against the observed LSGT result.
- P-value > 0.05

