

Recent Developments in CL-20 Synthesis and Processing

Dr. Nicholas Straessler Dr. Melissa Mileham Dr. Michael Kramer Paul Braithwaite

Research and Development, ATK Aerospace Group, Brigham City, Utah 84302 Nick.Straessler@ATK.com

Prepared for: 2012 NDIA IM/EM Symposium

Las Vegas, Nevada 14 - 17 May 2012 Abstract 13899

Outline

- Acknowledgements
- Overview
- CL-20 synthesis
 - Process improvements
- Use in formulations
- Summary

Acknowledgements

- Support of CL-20 from many DoD and DOE partners
- Dedicated team at ATK Aerospace
 - PM: Nathan Seidner
 - Scientists: Dr. Mike Killpack, Michael Adams
 - Analytical team: Max Patterson, Brian Rosa, Erin Anderson, Ken Spaulding, Joanne Bingham, Dr. Shawn Parry, Dr. Ping Li
 - Operations: David Schmidt
 - Quality: Kirk Bailey
 - Safety: Arlan Brandt

- CL-20 is one of the most interesting energetic molecules to be developed since WW II
- Original CL-20 synthesis route developed at NAWC by Dr. Arnold Nielson, 1987
- TADF process pioneered by Thiokol in early 1990s provided access to thousands of pounds of material for development programs
 - Synthesis was not optimal
- TADA, discovered by Dr. Robert Wardle in 1988, was not considered a viable precursor until independent development of a large-scale process for its synthesis was revealed by Asahi in 1997 time frame
 - TADA nitration produces higher yield and purity product and lower, more easily controlled exotherm than the TADF process
- During the past decade regular improvements in the synthesis and crystallization have been made

CL-20 Synthesis Summary

• Four step process from commercially available feed stock:

- Recrystallization is required to obtain the desired ϵ polymorph crude CL-20 from nitration is a mixture of α and γ
- Recrystallization is essential to achieving desired particle size, morphology, and purity
 - Therefore any optimization of the recrystallization process is expected to have a positive impact on material cost and product quality

CL-20 Manufacturing Overview – Nitration

Nitration process is being continually refined and improved

CL-20 Recrystallization Overview

- Process is the result of a 2003 Navy Mantech effort
 - Determined that "evaporative recrystallization" was optimum for reproducibility
 - Scaled to multiple 500-gallon runs
 - Gives reproducible "unground" particle size
 - Consistently ε polymorph
 - Good particle morphology (distinct crystals)

Recrystallized (Unground) CL-20

- CL-20 is manufactured to an internal ATK specification
 - Specification is based on the existing STANAG for CL-20
- Improvements to crystallization step produces crystals that are more rounded and easier to process
 - Internal defects have been minimized

5.0k^V AMRAY #0147

Ground CL-20

- Two grades of ground CL-20 are produced on a routine basis
 - FEM ground
 - Nominally 2 micron
 - Jar milled
 - Nominally 11 micron
- FEM facility has been recently refurbished and upgraded
 - Improvements to grounding, smooth walls, collector, etc.

Formulation and Application Advances

- New formulations and applications involving CL-20 have emerged as a result of:
 - Better CL-20 crystal quality
 - Availability of multiple and useful sizes of CL-20
 - Greater understanding of CL-20 binder filler interaction
- Notable examples include:
 - High solids cast cure explosives with good IM properties
 - Initiator systems that utilize CL-20 based formulations

Main body & closure

Mild Cook-off

Improved Initiators

- ATK has invested substantial internal funds during the past three years to decrease CL-20 cost and improve the CL-20 manufacturing process
- The approach to cost reduction has focused in two key areas which have been attacked vigorously:
 - Process efficiency improvements
 - Precursor (TADA) cost reduction
 - TADA accounts for over 50% of the cost of CL-20
- Early studies were focused on process improvements
- More recent efforts have concentrated on developing a domestic TADA manufacturer and optimizing the TADA synthesis process
- Continued long-term objectives are being pursued

Precursor Improvement Initiative

Experiments were performed to understand reaction ٠ conditions and improve yield

PhH₂C,

PhH₂C~

PhH₂C

- <u>Synthesis Step 1</u>
 - Reaction rates
 - Temperature
 - Pressure
 - Time
 - Wet catalyst vs. dry
 - Best catalyst (evaluated 18 catalysts)

Synthesis Step 2

- Filtration, H₂O, solvent rinse, etc.
- Time
- Temperature
- Catalyst one addition vs. two additions
- Reuse of catalyst

 H_2

CH₂Ph

`CH₂Ph

HBIW

ù−CH₂Ph

Experimental Setup and Results

Seven experiments are run at once under identical pressure and temperature conditions

- Work resulted in drastically increased yield and reduced catalyst costs
 - Early improvements focused on Step 1
 - Later efforts refined Step 2
 - Substantial improvements were made in both steps
 - Efforts are continuing on work-up of the TADA

- CL-20 provides enabling capability for several key areas
- Processing improvements, such as FEM grinding, make CL-20 a more viable ingredient for new state-of-the-art energetic formulations
- Synthesis of CL-20 continues to be refined and improved
 - In recent years activities have focused in two areas:
 - Development of a domestic source for TADA
 - Cost reduction