

Exudation Problems and Solutions with the GIM Melt-Cast Explosive

M. Brassard

DRDC Valcartier

Acknowledgments

Co-authors

- P. Brousseau
- G. Ampleman
- S. Thiboutot
- S. Brochu
- S. Trudel
- P. Béland
- T. Gamache

- The team at General Dynamics
 OTS Canada
- The team at the Biotechnology Research Institute (NRC Canada)
- DND/Director General Environment for funding

Summary

- Background on our RIGHTTRAC project
- Presentation of the exudation problem
- Solution identified
- Conclusions

RIGHTTRAC Concept

- Test vehicle: 105-mm M1 artillery round
 - Scalable to other weapons

Avoid using toxic and carcinogenic ingredients in gun propellants

Decrease the production of UXOs

Green/IM propellant

More reliable fuzing system with self-destruct mechanism

Avoid RDX

Green/IM explosive

Background – Avoid RDX

Water solubility (mg/L)		
RDX	HMX	
42	5.0	

EPA Lifetime Health Advisory for Drinking Water (μg/L)			
RDX	HMX		
2	400		

- HMX is less soluble than RDX
- HMX is less toxic than RDX
- Factor of 1000 better for the environment!
- Other energetic solids could also be appropriate but at this point in time, HMX is our best bet!

http://www.clu-in.org/char/technologies/exp.cfm http://www.epa.gov/waterscience/criteria/drinking/dwstandards.pdf

RIGHTTRAC – Explosives

- DEFENCE DÉFENSE

- Main explosive charge
 - Option 1. Green/IM Explosive (GIM)
 - Mix of melt-cast explosives with an Energetic Thermoplastic Elastomer (ETPE) patented by DRDC Valcartier
 - TNT/HMX/ETPE
 - Conventional melt-cast apparatus can be used without modifications
 - Recyclable products for remilitarization
 - Option 2. Polymer-Bonded Explosive (HMX-based
 - HMX/HTPB/DOA
 - High mechanical strength, good explosive properties, excellent chemical stability, insensitivity

GIM Explosive

- The melt-cast explosive was selected
- A number of AOP-7 tests were performed
- Significant problems were detected with the exudation test at 70 °C for 320 hours
 - Large amounts of liquids lost
 - > 3% original mass
 - Composition of the liquid exudate
 - TNT 46 %
 - ETPE 52.8 %
 - HMX 1.2 %

- Why?
 - Is the polymer lowering the melting point of the mix below 70 °C?
 - No
 - The structure is intact at 70 °C

 The DSC does not tell that story (onset may be a few degrees lower)

- Why
 - Is the polymer melting?
 - No
 - We have dynamic mechanical data to prove it
 - The polymer softens but does not melt at such temperatures
 - We tested with stiffer polymers and still had exudation

- Why?
 - The polymer is polydispersed. Are the very short chains leaving?
 - Yes, but not some large ones as well.
 - The molecular weight may be influencing

ETPE in the GIM	Mn	Mw
3M-01 (original)	13000	34100
3M-01 (in the exudate)	10500	26400

- We decided to look at the polymer characteristics
 - Molecular weight
 - It is a linear polymer formed by reacting GAP diol with MDI
 - Forms hydrogen bonds between chains

- Our lot of ETPE was made by 3M in the USA according to our specs
 - We may have gone a little conservative on the NCO/OH ratio
 - » Keep the polymer linear and not crosslinked

Exudation Test

- We made our own exudation test
 - To represent a 105-mm shell, open
 - Quicker to set and assess
 - Visual impact as well (see the liquid come out if any)
 - Simple cylinders (31-mm diam x 254-mm long)
 - Open in a container
 - 320 hours at 70 °C
- We ran tests with different versions of the ETPE

- We found that the molecular weight of the polymer strongly affected the exudation
 - The highest molecular weights gave the lowest exudation results

ETPE	Mn	Mw	% Exudation
3M-01	13000	34100	4.84
DRDC 2008-04	14600	39400	3.02
DRDC 2000-1	18400	60900	1.94
DRDC 0.950	*	*	0.97
DRDC 0.955	*	*	0.39
DRDC 0.960	*	*	0.25
Octol (no ETPE)	-	-	0.32

^{*} Not measurable by GPC. Some crosslinking

- It has consequences on the mix
 - A higher molecular weight means a higher viscosity of the polymer
 - Also means a higher viscosity of the GIM mix

- We have a solution to the viscosity problem
 - We have to change the composition slightly
 - Add some TNT
 - It has a very strong effect on the mix viscosity

- Now we need to make the required polymer at a large scale
 - GPC is not very useful
 - We need a new quality control method to assess the ETPE
 - We use the viscosity again
 - Viscosity of an ETPE/Ethyl acetate mix

Conclusions

- We ran into a significant exudation problem with our explosive
 - TNT, HMX and a polymer
- The solution was to increase the molecular weight of the polymer
 - More than ten fold decrease in exudation
- It will influence the viscosity of the mix
 - We are working on this
- We still believe that adding polymers to a melt-cast explosive can significantly reduce its vulnerability

DEFENCE PÉDÉFENSE