

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Briefed by: Daniel Zaloga US Army ARDEC Picatinny Arsenal, NJ 973-724-2980 daniel.zaloga@us.army.mil May 2012 IM/EM Symposium Las Vegas, Nevada

Reference #13928

Team Members

- Keyur Patel
- Brian Travers
- Leila Zunino
- Philip Samuels
- Erik Wrobel

- 81mm mortars (M889A1, M889A2, M821A2) are switching to IMX-104 in the main fill
- Due to the insensitivity IMX-104 (larger critical diameter than Comp B and PAX-21), the initiation train requires the inclusion of a PBXW-14 auxiliary charge
- What follows is the initiation reliability of 81mm mortars

Determine if the PBXN-5 fuze booster alone can reliably initiate IMX-104

SCO results show that current fuze configuration with both 60 and 81mm IMX-104 filled mortars are IM compliant (Type V reaction)

Configuration

- 81mm
 - M734A1 Fuze
 - PBXN-5 Lead
 - Standard density PBXN-5 fuze booster
 - IMX-104 Main Fill
- Three rounds initiated at ambient, hot, and cold temperatures

Ambient Temperature – Run to Detonation

Cold (-40°F for 48 hours) – High Order Reactions

Hot (145°F for 48 hours) – Low Order Reactions

 Due to low order reaction, IPT determined that an auxiliary charge was necessary to overcome shock insensitivity and critical diameter effects of IMX-104 when using an PBXN-5 fuze booster

Configuration

- 81mm
 - M734A1 Fuze
 - PBXN-5 Lead
 - Standard density PBXN-5 fuze booster
 - IMX-104 Main Fill
- Tests verify that PBXN-5 fuze booster will not reliably initiation IMX-104 fill

- At standard fuze booster density, there would be 15,000 failures per 20,000 shots
- At the highest test density (98% TMD), there would be 150 failures
- For desired 0.99995 reliability, the pellet has to be at 99% TMD

Std dev 0.0157

Determine if PBXW-14 auxiliary booster can reliably initiate IMX-104

Configuration

RDECOM

- 81mm BLA
 - M734A1 Fuze
 - PBXN-5 Lead
 - PBXW-14 fuze booster
 - PBXW-14 aux. booster
 - IMX-104 Main Fill
- High density: aux. booster pressed approximately 97% TMD

PBXW-14 Auxiliary Booster

to IMX-104 Main Fill

- High Density Tests
 - All three tests had High Order reactions

Since all the rounds in the previous high density aux. booster test were detonations, low density tests were conducted

Configuration

- Rather than a pressed PBXW-14 aux. booster, loose PBXW-14 powder was poured into the charge cup
 - Lowest density, worst case scenario

– IMX-104 Main Fill

- Low Density Tests (loose powder in charge cup)
 - W-14 at 43.9% TMD High Order
 - W-14 at 43.6% TMD High Order
 - W-14 at 42.1% TMD Low Order

- Vari-gap analysis
- Standard density PBXN-5 fuze booster to PBXW-14 auxiliary booster

-Solid plastic attenuator inserted into gap

 Dent depth was recorded and a 50% failure point determined

BARMY RDECOM TO PBXW-14 Aux. Booster

Varigap M734A1 (N5) to W14 Aux. Charge

17

RP-3 to RP-87 Comparison

- Early tests used the RP-87 detonator
- There was concern the RP-87 might be overdriving the train
- RP-3 is closer in output to fuze
- Two sets of tests:
 - Detonator to lead
 - Lead to booster

RP-3 to RP-87 Comparison

 As a result, switched to using RP-3 in initiation tests

Detonator to Lead Average Dent Depth (in)	
S&A	0.0704
RP-87	0.0773
RP-3	0.0696

Lead to Booster Average Dent Depth (in)		
S&A	0.105	
RP-87	0.108	
RP-3	0.105	

- Full initiation train:
 - RP-3 detonator
 - PBXN-5 lead
 - PBXN-5 fuze booster
 - PBXW-14 auxiliary booster
 - IMX-104 main fill
- 145°F
- -40°F
- All rounds functioned
 high order

Distribution Statement A: Approved for public release; distribution unlimited

RDECOM 81mm Hot/Cold Tests

Summary of 81mm Testing

 IMX-104 exhibited slow run up to detonation in 81mm mortars when using only a PBXN-5 fuze booster

IS ARMY RDECOM

- A fewer number of fragments from the body above the obturator as compared to Comp B baseline fragmentation profile
- It was concluded that an auxiliary charge will be necessary in the 81mm explosive train
- PBXN-5 has been selected as the fuze booster material
- PBXW-14 has been selected for the auxiliary booster Distribution Statement A: Approved for public release; distribution unlimited

QUESTIONS?

Daniel Zaloga US Army ARDEC Bldg 3022 Picatinny Arsenal, NJ 07806 973-724-2980 Daniel.zaloga@us.army.mil