

U.S. Army Research, Development and Engineering Command

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Nitrotriazolone Process Optimization

Authors: Timothy E. Dawag & Dr. Jacob Morris 15 May 2012

Acknowledgements

BAE SYSTEMS

- US ARMY RDECOM
 - ManTech Funding
- US ARMY RDECOM-ARDEC
 - Munitions Engineering & Technology Center (METC)
 - Engineering & Technical Lead
 - Producibility Support
 - Project Management & Integration Directorate (PMID)
 - Program Support
 - Defense Ordinance Technology Consortium (DOTC)
 - Contracting Support
- US ARMY PD-Joint Services
 - Leveraged Funding
- US ARMY PM-CAS
 - Technology Transfer Customer
- BAE Systems
 - Research & Development Analytical Labs
 - Production / Design Teams

- Optimize NTO re-crystallization process to increase product yield without affecting quality
 - Identify key process metrics that can be optimized
 - Quantify and verify process parameters in laboratory environment
 - Implement and verify process improvements on manufacturing scale

Nitrotriazolone

RDECOM

 NTO is a key constituent being integrated into new energetic material formulations (IMX-101 & IMX-104)

$\overset{\mathsf{H}}{\underset{\mathsf{H}\mathsf{N}-\mathsf{N}}{\overset{\mathsf{H}}{\xrightarrow{}}}} + \operatorname{H}\mathsf{NO}_{3} \longrightarrow \overset{\mathsf{O}}{\underset{\mathsf{H}\mathsf{N}-\mathsf{N}}{\overset{\mathsf{H}}{\xrightarrow{}}}} \overset{\mathsf{NO}_{2}}{\underset{\mathsf{H}\mathsf{N}-\mathsf{N}}{\overset{\mathsf{H}}{\xrightarrow{}}}} + \operatorname{H}_{2}\mathsf{O}$

Triazolone + 99% Nitric Acid ---- Nitrotriazolone (NTO) + Water

- NTO has similar performance to RDX with improved IM characteristics
- IMX explosive formulations are the high explosive loads in IM artillery projectiles and mortar cartridges

• Nitrotriazolone

RDECOM

- Demand for NTO will increase substantially to comply with insensitive munitions requirements
 - IMX-101 Qualified by the U.S. ARMY as main fill explosive in the 155mm M795 Artillery Projectile.

Background

- 2.1 M lbs annual NTO quantity required for IMX formulations
- It is anticipated that other munitions which use traditional energetics (Comp B or TNT) will utilize the same or variant compositions containing NTO
- NTO yield is not fully achieved. As a result, manufacturing costs are high (\$15/lb). Current manufacturing technique prevents full recovery of NTO

155mm M795 Projectile

- Develop / modify manufacturing techniques to permit full or nearly full recovery of NTO in bench scale environment
- Verify NTO crystal size, shape and morphology meets or exceeds military specifications
- From bench scale, develop design for facility modifications and/or equipment additions to optimize NTO manufacturing process
- Implement and verify process modifications at Holston AAP, G-10 Agile Manufacturing Facility

- Optimized NTO manufacturing process
 - Increased NTO yield and recovery
 - Increased yield per batch, lower NTO cost
 - Improved production control to attain consistent NTO yield and recovery

- Analytical Analysis
 - Equipment
 - 2-L Mettler-Toledo Reaction Calorimeter
 - Fully automated, integrated with PC for data collection
- Design of Experiments
 - DOE Variables: Final Temperature, Cooling Rate, NTO Concentration, Agitation, Hold Temperature
 - Experiments were set up so that each time a variable was changed (i.e. cooling rate, NTO concentration, etc), the yield and quality of NTO produced was looked at each of the four final temperatures (20, 15, 10, 5 °C)

Achievements

DOE Results/ Conclusions

RDECOM

- Lowering the final temperature has the most noticeable impact on yield.
 - Changing the baseline parameters rarely changed the crystal size & morphology
 - Verified crystal structure and morphology using optical and scanning electron microscopes
 - NTO purity verified thru HPLC
- Lowering NTO temperature down to
 5deg C has no little affect in quality
- An increase as high as 10% NTO yield
- DOE results fed into the process design

Distribution Statement A – Approved for public release, unlimited distribution

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Completed Process Design
 - Incorporating chiller / refrigeration system
 - Due to the energy consumption in the chiller, the design incorporates river water to initially cool during re-crystallization.
 - "Chilled" water will then cool to desired temperature
 - Integrating new chiller controls with existing control system
- Implementation
 - Procured long lead process equipment
 - Anticipated equipment arrival April May 2012

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- NTO production facility scheduled for 6-month shut down
- Install, integrate, and prove-out facility improvements
- Verify NTO production yield and quality
- Transition to production by end of CY2012

- Decreasing NTO re-crystallization temperature increases NTO product yield
 - At 5 deg C, NTO yield increases by 10%
 - Low re-crystallization temperature does not affect the overall quality of NTO
- FY12 milestones include procuring, installing, and integrating refrigeration / chiller system. As well as, prove-out process improvements and verify program metrics.

Questions

Distribution Statement A – Approved for public release, unlimited distribution

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.