Fundamental Statistical Concepts in Test and Evaluation

(a 4-hour tutorial)

Dr. Mark J. Kiemele
Air Academy Associates
mkiemele@airacad.com

28 ${ }^{\text {th }}$ Annual National Test \& Evaluation Conference National Defense Industrial Association (NDIA) Hilton Head, SC
12 March 2012

References
Basic Statistics: Tools for Continuous Improvement Understanding Industrial Designed Experiments SPC XL Software

INTRODUCTIONS

- Name
- Organization
- Job Title/Duties
- Experience in using statistical concepts in T\&E

AGENDA

- Some Key Terms and Concepts
- Sampling Distribution of the Mean
- Confidence Intervals
- Estimating a population mean (continuous data)
- Estimating a population proportion (binary data)
- Determining Sample Size
- For estimating a population mean (continuous data)
- For estimating a population proportion (binary data)
- Drawing Conclusions When Comparing Data Sets (Hypothesis Testing)
- Comparing means (formal test and Rule of Thumb)
- Comparing standard deviations (formal test and Rule of Thumb)
- Comparing proportions (binary data)
- Controlling both the Alpha and Beta risks
- The power of a test
- Determining sample size for a specified power
- Critical thinking and the need for DOE
- Power and sample size for DOEs

SOME KEY TERMS

- Population (Parameters)-use Greek letters (μ, σ)
- Sample (Statistics)-use Latin letters ($\overline{\mathbf{X}}, \mathbf{S}$)
- Random Sampling
- Parent and Child Distributions
- Point estimate
- Interval estimate
- Confidence Level
- Confidence Interval
- - Upper confidence limit
- - Lower confidence limit
- Half-interval width (margin of error)
- Determining Sample Size
- Hypothesis Testing
- - Type I error (alpha risk)
- Type II error (beta risk)
- Significance and Power

GRAPHICAL MEANING OF μ and σ

$\mu=$ Average $=$ Mean $=$ Balance Point
$\sigma=$ Standard Deviation $=$ Measure of Variation

$\sigma \approx$ average distance of points from the centerline

PERCENTAGE OF AREA UNDER THE CURVE (for various numbers of standard deviations away from the mean)

DATA GATHERING, SAMPLING, AND MEASUREMENTS

- Data gathered should be representative of the process being studied.
- Poor approach to sampling
- convenience sampling
- Better approaches to sampling
- random sampling
- systematic sampling
- Before gathering the data, think about the measurement system being used to generate the data
- is it accurate? precise? repeatable?

PARENT AND CHILD DISTRIBUTIONS

- We refer to the distribution of individual values from the population as the "parent" distribution. The population may be normal, but it could also follow some other distribution.
- We refer to the distribution of sample averages as the "child" distribution.

- There is an important theorem in statistics, called the Central Limit Theorem (CLT), which says that no matter what the parent distribution looks like, as long as the sample size is big enough, the child distribution (of sample averages) will be approximately normal.

SAMPLING DISTRIBUTION OF THE MEAN

(the child distribution)

DEFINITION:

The sampling distribution of the mean (sometimes called the $\overline{\mathbf{X}}$ or "child" distribution) is the distribution of all means (or averages) obtained from all possible samples of a fixed size (say n) taken from some "parent" population.

NOTATION:
$\mu_{\mathrm{x}} \quad=\quad$ center (or mean) of the "parent" or X distribution
$\sigma_{x}=\quad$ standard deviation of the "parent" or X distribution
$\mu_{\overline{\mathrm{x}}} \quad=\quad$ center (or mean) of the "child" or X distribution
$\sigma_{\bar{x}} \quad=\quad$ standard deviation of the "child" or X distribution

IMPORTANT RESULTS:

(1) The center of the "child" (\bar{X}) distribution is the same as the center of the "parent" (X) distribution.

$$
\mu_{\bar{x}}=\mu_{x}
$$

(2) The standard deviation of the "child" ($\overline{\mathrm{X}}$) distribution is smaller than the standard deviation of the "parent" (X) distribution.

$$
\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}
$$

CENTRAL LIMIT THEOREM

For almost all populations, the sampling distribution of the mean can be approximated closely by a normal distribution, provided the sample size is sufficiently large.

Sampling Distributions of \bar{X} for Various Sample Sizes

ILLUSTRATING PARENT AND CHILD DISTRIBUTIONS EXERCISE (Optional)

Parent (single roll of 1 die)

Number Rolled	\# of Observations
1	
2	
3	
4	
5	
6	

Child (average of 4 rolls)

Total On Dice	Average	\# of Observations
4	1.00	
5	1.25	
6	1.50	
7	1.75	
8	2.00	
9	2.25	
10	2.50	
11	2.75	
12	3.00	
13	3.25	
14	3.50	
15	3.75	
16	4.00	
17	4.25	
18	4.50	
19	4.75	
20	5.00	
21	5.25	
22	5.50	
23	5.75	
24	6.00	

ILLUSTRATING PARENT AND CHILD DISTRIBUTIONS (Optional)

\# of Observations

SAMPLING AND CONFIDENCE INTERVALS

- Suppose we measure the time it takes for a customer service representative to answer a call.
- We use the data from our sample to estimate the average call time. How good is our estimate?
- Confidence intervals provide error bounds or an estimate of uncertainty for a population parameter based on our sample data.

Confidence Interval = Point Estimate \pm Margin of Error

CONFIDENCE INTERVAL FOR POPULATION MEAN, μ (Continuous Data)

	$\binom{U}{L}=\bar{x} \pm Z\left(\frac{s}{\sqrt{n}}\right)$
Where	
$U=$	upper confidence limit
$\mathbf{L}=$	lower confidence limit
$\bar{X}=$	sample average
$\mathbf{Z}=$	2 (for 95\% confidence) or
	3 (for 99\% confidence)
$\mathbf{s}=$	sample standard deviation
$\mathbf{n}=$	sample size

Computational Template for Confidence Limits

EXAMPLE:

Over the course of a week, we randomly select and time 16 customer service calls. We find that the average time is 15.6 minutes with a standard deviation of 2.1 minutes. What is a 99% confidence interval for the true average service time?

USING SPC XL FOR CONFIDENCE INTERVALS FOR POPULATION MEAN, μ (Continuous Data)

- SPC XL will produce a more exact interval. Rather than using $Z=2$ or 3 from our 68/95/99 rule of thumb, it uses the exact values from a t-distribution (similar to Z, but adjusted slightly to account for the fact that we're using a small sample to estimate σ)
- SPC XL > Analysis Tools > Confidence Interval > Normal

Normal Confidence Interval (Mean)	
User defined parameters	16
Sample Size (n)	15.6
Sample Avg	2.1
Sample Standard Dev	99.00%
Confidence Level	
Confidence Interval	
Lower Limit	
14.05296861	

- Exercise: Suppose we sampled 64 calls and got the same average time and sample standard deviation. How does this affect our confidence interval?
- Exercise: Suppose we're studying the average cycle time to pay invoices. We randomly sample 30 invoices, and find the average is 7.8 days with a standard deviation of 1.4 days. Using SPC XL, construct a 95% confidence interval for the true average cycle time for paying these invoices.

USING SPC XL TO DETERMINE SAMPLE SIZE FOR POPULATION MEAN, μ (Continuous Data)

- Confidence interval calculation can be worked backwards to determine an appropriate sample size
- Suppose in the previous example, we wanted to estimate the true average service call time to within ± 1 minutes with 99\% confidence
- \quad Steps to determine sample size:

1. Decide on the level of confidence you want, typically 95% or 99% (in our example, 99%)
2. Specify the desired half-interval width of the confidence interval or the margin of error (Upper bound - Lower bound $=2 \mathrm{~h}$, where $\mathrm{h}=$ half interval width) (in our example, $\mathrm{h}=1$)
3. Find an approximation for the population standard deviation from historical data, small pre-sample, etc. (in our example, use the previous sample standard deviation of 2.1 minutes)

USING SPC XL TO DETERMINE SAMPLE SIZE FOR POPULATION MEAN, μ (Continuous Data)

Select $\underline{\text { SPC XL > Analysis Tools > Sample Size > Normal }}$

Sample Size to Estimate the Mean of a Normal Distribution User defined parameters		
Estimated Standard Dev	2.1	
Half Interval Width	1	
Confidence Level	99.00%	
Results		
Estimated Sample Size (n)	29	

CONFIDENCE INTERVAL FOR POPULATION PROPORTION, π (Binary Data)

$$
\binom{U}{L}=p \pm Z \sqrt{\frac{p q}{n}}
$$

Where
$\mathbf{U}=$ upper confidence limit
$\mathbf{L}=$ lower confidence limit
p = proportion of "defectives" (or category of interest) in the sample
$q=1-p$ (q is the proportion of "nondefectives")
Z = 2 (for 95\% confidence) or 3 (for 99\% confidence)
$\mathrm{n}=$ sample size

Computational Template for Confidence Limits

EXAMPLE:

You work in a finance office and are in charge of processing travel vouchers submitted by several different organizations. You sample 100 vouchers and find 8 to have discrepancies or errors. Find a 95\% confidence interval for the true but unknown proportion of vouchers containing errors.

USING SPC XL FOR CONFIDENCE INTERVALS FOR POPULATION PROPORTION, π (Binary Data)

- Again, we can use SPC XL to produce a more exact answer.
- Select SPC XL > Analysis Tools > Confidence Interval > Proportion (Binomial)

Binomial Confidence Interval (Proportion)		
User defined parameters		
Sample Size (n)	100	
Number Defective(x)	8	
Confidence Level	95.00\%	
Confidence Interval		
Lower Limit	<p<	Upper Limit
0.035171509	0.08	0.1515

- Exercise: Suppose in the previous example we had sampled 1,000 travel vouchers and found 80 to have discrepancies or errors. Find a 95\% confidence interval for the true but unknown proportion of vouchers containing error.

EXERCISE

Using the data from your sample of M\&M's, find the 95\% confidence limits for the true (but unknown) proportion of M\&M's that Mars Corporation produces for each color.

	Brown	Yellow	Red	Orange	Blue	Green
x						
n						
$p=\frac{x}{n}$						
Lower Bound						
Upper Bound						

What do you notice about the width of your confidence intervals?

If you wanted to estimate the true percentage of blue M\&M's to within $\pm 3 \%$ with 95% confidence, what sample size would be required? (note: you can use the proportion (p) of blue above for your estimated proportion of blue M\&M's)

DETERMINING SAMPLE SIZE FOR PROPORTIONS (Binary Data)

- Confidence interval calculation can be worked backwards to determine an appropriate sample size
- \quad Suppose in the previous example, we wanted to estimate the true proportion of travel vouchers with discrepancies to within $\pm 1 \%$ with 95% confidence. Also, assume that the historical proportion of vouchers with discrepancies is no more than 2%.
- \quad Steps to determine sample size:

1. Decide on the level of confidence you want, typically 95% or 99% (in our example, 95%)
2. Specify the margin of error or the desired half width of the confidence interval (Upper bound - Lower bound $=2 \mathrm{~h}$, where $\mathrm{h}=$ half interval width) (in our example, $\mathrm{h}=.01$ or 1%)
3. Find an approximation for the proportion of interest, p. It can come from historical data. If no estimates are available, then use $p=.50$ to provide a worst case (conservative) sample size estimate. (in our example, use 2\% (.02))

DETERMINING SAMPLE SIZE FOR PROPORTIONS (Binary Data) (continued)

Select SPC XL > Analysis Tools > Sample Size > Binomial Conf. Interval (proportion)

Binomial Sample Size		
User defined parameters		
Proportion defectives (p)	0.02	
Half Interval Width	0.01	
Confidence Level	$\mathbf{9 5 . 0 0 \%}$	
Results		
Estimated Sample Size (n)	753	

HYPOTHESIS TESTING

- A method for looking at data and comparing results
- Method A vs. Method B
- Material 1 vs. Material 2
- Before vs. After Project results
- Helps us make good decisions and not get fooled by random variation:
- "Is a difference we see REAL, or is it just random variation and no real difference exists at all?"
- We set up 2 hypotheses
- H_{0} is called the null hypothesis (no change, no difference)
- H_{1} is called the alternate hypothesis
- Example: $H_{0}: \mu_{1}=\mu_{2}$ vs. $H_{1}: \mu_{1} \neq \mu_{2}$

- Based on the data we collect, we must decide in favor of either H_{0} or H_{1}. Which does the evidence support?

NATURE OF HYPOTHESIS TESTING

H_{0} : Defendant is Innocent H_{1} : Defendant is Guilty

Since verdicts are arrived at with less than 100\% certainty, either conclusion has some probability of error. Consider the following table.

		True State of Nature	
		H_{0}	H_{1}
Conclusion Drawn	H_{0}	Conclusion is Correct	Conclusion results in a Type II error
	H_{1}	Conclusion results in a Type I error	Conclusion is Correct

Type I or II Error Occurs if Conclusion Not Correct

The probability of committing a Type I error is defined as α ($0 \leq \alpha \leq 1$) and the probability of committing a Type II error is $\beta(0 \leq \beta \leq 1)$. The most critical decision error is usually a Type I error.

2-SAMPLE HYPOTHESIS TEST

Strength Measurements

Temp	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{2}}$	$\mathbf{y}_{\mathbf{3}}$	$\mathbf{y}_{\mathbf{4}}$	$\mathbf{y}_{\mathbf{5}}$	$\mathbf{y}_{\mathbf{6}}$	$\mathbf{y}_{\mathbf{7}}$	$\mathbf{y}_{\mathbf{8}}$	$\mathbf{y}_{\mathbf{9}}$	$\overline{\mathbf{y}}$	$\mathbf{s}^{\mathbf{2}}$	\mathbf{s}
$\mathbf{(L)} \mathbf{2 0 0}$	2.8	3.6	6.1	4.2	5.2	4.0	6.3	5.5	4.5	4.6889	1.3761	1.17
$\mathbf{(H)} \mathbf{3 0 0 ^ { \circ }}$	7.0	4.1	5.7	6.4	7.3	4.7	6.6	5.9	5.1	5.8667	1.1575	1.08

Composite Material Data (Low=200, High $=300^{\circ}$)

The graphical interpretation of the hypotheses to be tested are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{\mathrm{L}}=\mu_{\mathrm{H}} \\
& \mathrm{H}_{1}: \mu_{\mathrm{L}} \neq \mu_{\mathrm{H}}
\end{aligned}
$$

TESTING FOR DIFFERENCES IN AVERAGES (t-test)

- The formal statistical test for detecting a shift in average is called the t-test.
- p-values come from the data and indicate the probability of making a Type I error
- Rule of Thumb:
- If p-value $<.05$, a highly statistically significant conclusion that H_{1} is true
- If $.05<$ p-value $<.10$, a moderately statistically significant conclusion that H_{1} is true
- (1 - p -value) $\cdot 100 \%$ is our percent confidence that H_{1} is true

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1}=\mu_{2} \\
& \mathrm{H}_{1}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

t-TEST USING SPC XL

- SPC XL will give us p -values
- \quad SPC XL > Analysis Tools > t Test matrix (mean)

The results below represent the p-values from a 2 sample t-test. This means that the probability of falsely concluding the alternative hypothesis is the value shown (where the alternate hypothesis is that the means are not equal). Another way of interpreting this result is that you can have (1 -pvalue)* 100% confidence that the means are not equal.

t Test Analysis (Mean) P-value $=0.041$

- Rule of Thumb:
- If p-value $<.05$, highly significant difference
- If .05 < p-value < . 10 , moderately significant difference
- (1 - p-value) • 100% is our percent confidence that there is a significant difference.

RULE OF THUMB

Tukey Quick Test for Detecting a Significant Shift in Average

To determine if a significant shift in average has occurred, a test developed by John Tukey in 1959, (Technometrics, 1, 31-48) and popularized by Dorian Shainin, (World Class Quality, Bhote, K.R., 1988) is called the Tukey Quick Test or End Count Technique. To perform this test:

1. Arrange all of the data on a scale such that each of the two groups is represented by a different symbol. Refer to the previous example, on page 24 , where $L=$ low temperature and $\mathrm{H}=$ high temperature.
2. Starting from the left, count the number of similar symbols until an opposite symbol is encountered.
3. Likewise, starting from the right, count the number of similar symbols until an opposite symbol is encountered.
4. Summing the two counts yields the End Count.

Note: If the leftmost and rightmost symbols are the same, then the End Count is zero. The significance associated with a given End Count can be found using the following table:

End Count	Significance	Confidence there exists a significant shift in average
6	.10	.90
7	.05	.95
10	.01	.99
13	.001	.999

The previous example illustrates an End Count of 7 (3 on left and 4 on right), giving approximately 95% confidence in concluding $\mathrm{H}_{1}: \mu_{\mathrm{L}} \neq \mu_{\mathrm{H}}$.

TESTING FOR DIFFERENCES IN STANDARD DEVIATIONS (F-test)

- SPC XL will give us p-values

- \quad SPC XL > Analysis Tools > F Test matrix (StdDev)

> The results below represent the p-values from a 2 sample F-test. This means the probability of falsely concluding the alternative hypothesis is the value shown (where the alternate hypothesis is that the variances are NOT equal). Another way of interpreting this result is that you can have (1-pvalue)* 100% confidence that the variances are not equal.

F Test Analysis (Std Dev)
P-value $=0.813$

- Rule of Thumb:
- If p-value < .05, highly significant difference
- If $.05<p$-value $<.10$, moderately significant difference
- (1 - p-value) $\cdot 100 \%$ is our percent confidence that there is a significant difference.

RULES OF THUMB

Quick Test for Detecting a Significant Shift in Standard Deviation

1. If $\frac{s_{\max }}{s_{\min }}>2.72$ then there is a significant shift in standard $\begin{aligned} & \text { deviation. }\end{aligned}$ A "gray zone" occurs when $1.5 \leq \frac{\mathrm{S}_{\text {max }}}{\mathrm{S}_{\text {min }}} \leq 2.72$. If this is the case, then ROT \#2 should be applied.
2. If $\frac{s^{2}{ }_{\text {max }}}{s_{\text {min }}^{2}} \sqrt{\frac{n_{1}+n_{2}}{2}}>10$, then there is a significant shift in standard deviation. This is a more discerning test than ROT \#1 above since it involves the sample sizes, n_{1} and n_{2}. However, neither n_{1} nor n_{2} should be greater than 60, and the smaller n should not be less than 70% of the larger n .

Note: If the sample sizes are the same, s (standard deviation) can be replaced by R (range).

EXERCISE

Using the Rules of Thumb on the tabulated data
below, conduct tests for different averages and
different standard deviations.

Factor A	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}	Y_{7}	Y_{8}	Y_{9}	Y_{10}	Y_{11}	Y_{12}	Y_{13}	Y_{14}	$\overline{\mathrm{Y}}$	S
Lo	201	209	215	221	211	213	217	205	218	208	203	214	212	215	211.6	5.8
Hi	218	225	217	222	223	220	222	216	221	224	224	221	220	219	220.9	2.7

EXERCISE

> Using SPC XL > Analysis Tools > t-Test (and F-Test), conduct the formal t-test and F-test for the two samples on the previous page to find the corresponding p -values. Compare these results with the results you obtained using the Rules of Thumb.

HYPOTHESIS TEST FOR THE EQUALITY OF TWO PROPORTIONS

1. $\mathrm{H}_{0}: \pi_{1}=\pi_{2}$ $\mathrm{H}_{1}: \pi_{1} \neq \pi_{2}$
2. Select $\alpha=.05, .01$, or .001
3. Compute the test statistic Z_{0} as:

$$
z_{0}=\frac{\left|p_{1}-p_{2}\right|}{\sqrt{\frac{\left(x_{1}+x_{2}\right)}{\left(n_{1}+n_{2}\right)}\left(1-\frac{x_{1}+x_{2}}{n_{1}+n_{2}}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

where

$$
\begin{aligned}
& n_{1}=\text { size of sample \#1 } \\
& n_{2}=\text { size of sample \#2 }
\end{aligned}
$$

$x_{1}=$ number of elements in sample \#1 in category of interest
$x_{2}=$ number of elements in sample \#2 in category of interest

$$
\begin{aligned}
& \mathrm{p}_{1}=\frac{\mathrm{x}_{1}}{\mathrm{n}_{1}} \\
& \mathrm{p}_{2}=\frac{\mathrm{x}_{2}}{\mathrm{n}_{2}}
\end{aligned}
$$

4. Find the area in the tail beyond Z_{0}, as shown here:

5. Let $P=2 \cdot($ Area from Step 4$)$
6. If $\mathrm{P}<\alpha$, conclude H_{1} with ($1-\mathrm{P}$) 100% confidence If $\mathrm{P} \geq \alpha$, fail to reject H_{0}

EXAMPLE

Two different radar systems are tested to determine their capability to detect a particular target under specific conditions. Radar System 1 failed to detect the target in 5 of 60 tests, while Radar System 2 failed to detect the target in 11 of 65 tests. Are the proportion of detection failures produced by the two radar systems significantly different? Use $\alpha=.05$.

Hint: use SPC XL > Analysis Tools > Test for

 Proportions
Test of Proportions
 H0: Group \#1 Proportion = Group \#2

Hypothesis Tested: Proportion
H1: Group \#1 Proportion not equal to Group \#2 Proportion

User defined parameters	
Number Defective Group \#1 $\left(\mathrm{x}_{1}\right)$	5
Sample Size of Group \#1 $\left(\mathrm{n}_{1}\right)$	60
Number Defective Group \#2 $\left(\mathrm{x}_{2}\right)$	11
Sample Size of Group \#2 $\left(\mathrm{n}_{2}\right)$	65
Results	
Sample Proportion Group \#1 $\left(\mathrm{p}_{1}\right)$	0.08333
Sample Proportion Group \#2 $\left(\mathrm{p}_{2}\right)$	0.16923
p -value (probability of Type I Error)	0.151
Confidence that Group \#1 proportion is not equal to Group \#2 proportion	84.9%

CONTROLLING BOTH ALPHA AND BETA RISKS

Suppose that in an operational test of a Maverick air-to-ground missile, we test at two different altitudes.
The measure of performance is miss distance.

Test Requirements:

1. Alpha $=.05$ (Confidence $=95 \%)$
2. Beta $=.20$ (Power $=80 \%$)
3. Be able to detect an average miss distance of at least 10 feet between the two altitudes
Known: Standard Deviation of Miss Distance for each altitude is 20 feet (estimated from previous testing or simulation).

What is the required sample size to satisfy these requirements?

FINDING THE SAMPLE SIZE NEEDED TO CONTROL BOTH ALPHA AND BETA RISKS ON MISS DISTANCE EXAMPLE

$\mathrm{H}_{0}: \mu$ Miss Distance (at low altitude) $=\mu$ Miss Distance (at high altitude)
$H_{1}: \mu$ Miss Distance (at low altitude) $\neq \mu$ Miss Distance (at high altitude)

Hint: use SPC XL > Analysis Tools > Sample Size > Hyp Test 2 Means (two sides)

Sample Size Calculation for Dual Sided 2 Sample Test (Mean)	
User defined parameters	
Estimated Standard Deviation (population 1)	
Estimated Standard Deviation (population 2)	20
Size of Difference in Means	20
Desired Power of Test	10
Desired Confidence Level	80.00%
	95.00%
Results	

[^0] All Rights Reserved. Unauthorized duplication prohibited by law.

POWER AS A PLANNING TOOL

- $\alpha=P\left(\right.$ Concluding H_{1} I H_{0} is correct $)=P$ (false detection)
- $\beta=P\left(\right.$ Concluding $H_{0} I H_{1}$ is correct $)=P($ missed detection $)$
- But "miss" by how much? By being able to detect a change in mean as small as Δ.
- Power $=1-\beta=P$ (correctly concluding H_{1} when there is a change in mean as small as Δ). That is, power is the probability that the test will detect a change in mean as small as Δ.
- A Priori (prior to the test) power calculations are good for planning purposes.
- Post Hoc (after the test) power calculations are meaningless because if we did not get a significant result, obviously the power of the test was too low (or H_{0} is perfectly true).
- Note: "Concluding H_{0} " $\boldsymbol{\rightarrow}$ "Failing to reject H_{0} "

FACTORS* AFFECTING POWER (1- β)

1. Difference in the means to be detected: Δ
2. Significance level (α)
3. Sample size (n)
4. Standard Deviation (σ)
5. For a given α, Power is directly related to $\left(\Delta^{*} \sqrt{n}\right) / \sigma$. Thus,

- As Δ gets larger, Power also gets larger
- As n gets larger, Power also gets larger
- As σ gets larger, Power gets smaller
- Since $\sigma^{2}=\sigma^{2}$ product $+\sigma^{2}$ measurement, large measurement system variability will adversely affect Power.

6. Other Factors
(a) Deviations from normality usually lower Power.
(b) Within-subject designs are usually more powerful than betweensubject designs.

* These factors are discussed in greater detail in

John Hoenig and Dennis Heisey. The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis. The American Statistician, February, 2001.

Russell Lenth. Some Practical Guidelines for Effective Sample Size Determination. The American Statistician, August 2001.

DETERMINING SAMPLE SIZE (for a given α, β, Δ, and σ)

- In the example of material strength, the supervisor took samples of size 9 under each temperature, without considering power, and found a statistically significant result for shift in the average strength. That is, p-value $<.05$. What if, before the test, the supervisor wanted to be able to detect a change in mean as small as 1 Newton of strength? What sample size should he have taken?
- Suppose $\alpha=.05$ (the most commonly used value).
- Suppose the supervisor wants to have 80% power in the test. That is $1-\beta=.80$, the probability of detecting a change in means between the two temperatures as small as $\Delta=1$ Newton.
- We still need an estimate of σ. Suppose from historical data that the supervisor estimates the standard deviation as 1.1 Newtons for both temperatures.
$\underline{\text { SPC XL }>\text { Analysis Tools > Sample Size > Hyp Test } 2 \text { Means (2 side) }}$
Sample Size Calculation
for Dual Sided 2 Sample Test (Mean)
User defined parameters
Estimated Standard Deviation (population 1) $\quad 1.1$
Estimated Standard Deviation (population 2) 1.1
Size of Difference in Means 1
Desired Power of Test
Desired Confidence Level
80.00\%
Din

Results
Sample Size
19

[^1]
EXAMPLE OF CRITICAL THINKING

- There are two kinds of treatment for kidney stones.
- It is known that Treatment $B(83 \%)$ is more effective than Treatment $\mathrm{A}(78 \%)$, as shown in the following test of proportions that turns out to be significant at the $p=.042$ level. Sample sizes are equal and sufficiently large ($\mathrm{n}=600$ for each treatment) to detect significance.

Test of Proportions	
User defined parameters	
Number of Successes for Trt A	468
Size of Sample \#1 $\left(\mathrm{n}_{1}\right)$	600
Number of Successes for Trt B	496
Size of Sample \#2 $\left(\mathrm{n}_{2}\right)$	600
Results	
Proportion Sample \#1 $\left(\mathrm{p}_{1}\right)$	0.78000
Proportion Sample \#2 $\left(\mathrm{p}_{2}\right)$	0.82667
p-value	0.04200

(1-pValue)* 100%

 is your percent confidence that the proportions are not equal[^2]
EXAMPLE OF CRITICAL THINKING (cont)

- Suppose that you visit your physician after the advent of a kidney stone attack, and you are presented with two alternative treatments along with the data shown on the previous page. And your physician asks which procedure you would prefer.
- What are some of the questions you might ask to help you select the best treatment for you?

EXAMPLE OF CRITICAL THINKING (cont)

- One such question might be: Are my kidney stones large or small and does the size of the stone impact the success rate of the two treatments?
- Your doctor searches his computer database for more information on kidney stone treatments. He then informs you that Treatment A is better than Treatment B for small size kidney stones, and Treatment A is also better than Treatment B for large size kidney stones.
- Now you are confused. How can this be? Just a minute ago, your doctor told you that Treatment B was better than Treatment A and even showed you the data and test of proportions. Your doctor then quotes his computer database by saying that for small stones, Treatment A has a 93% success rate while Treatment B has a 87\% success rate. He goes on to state that for large stones, Treatment A has a 73% success rate while Treatment B has a 67\% success rate. Your doc is now admittedly confused as well. But fortunately, you have learned to think statistically, and you ask for the complete set of data, including all sample sizes. This is shown on the next page.

EXAMPLE OF CRITICAL THINKING (cont)

	Small Stones	Large Stones	Total
Treatment A	140/150	328/450	468/600
	93\%	73\%	78\%
Treatment B	402/460	94/140	496/600
	87\%	67\%	83\%
Total	542/610	422/590	964/1200
	89\%	72\%	80\%

Note the inequity in sample sizes between size of stone and the treatment. Treatment A was performed much more frequently on Large Stones, while Treatment B was performed much more frequently on Small Stones, for which the overall success rate is much better. In this case, Stone Size is a lurking variable which confounds the overall result. This phenomenon of percentage reversal is called Simpson's Paradox. This is just one more reason why we need DOE and why we need to look at all potential variables before we test.

EXAMPLE DOE

Factor	A	B		C	
Row \#		Altitude	Velocity	Angle	
	1	2000	160	30	
	2	2000	160	60	
	3	2000	250	30	
	4	2000	250	60	
	5	8000	160	30	
	6	8000	160	60	
	8	8000	250	30	
	8000	250	60		

RULE OF THUMB in DOE

Sample Size (continuous data)

A general approach to sample size determination for 2 level designs is described below. (Source: David LeBlond).
1.
2. Let your false detection rate
3. Let n
$=\quad$ experimental error
$=\quad$ 0.05. (i.e., $\alpha=.05$)
$=\quad$ number of occurrences of ± 1 per column (i.e., the number of runs in a 2 level design).

To detect a change in as small as with a missed detection rate of ... (i.e., a β value)	... run this many reps per trial $\left(n_{r}\right)$.
Mean	$\begin{gathered} \Delta \sigma \\ (1<\Delta<2) \end{gathered}$	0.05	$\mathrm{n}_{\mathrm{r}}=\frac{64}{\mathrm{n} \Delta^{2}}$
		0.10	$\mathrm{n}_{\mathrm{r}}=\frac{54}{\mathrm{n} \Delta^{2}}$
		0.25	$\mathrm{n}_{\mathrm{r}}=\frac{36}{\mathrm{n} \Delta^{2}}$
Std Deviation	$\begin{gathered} \lambda \text { fold } \\ (2<\lambda<4) \\ \lambda=\frac{\sigma_{2}}{\sigma_{1}} \end{gathered}$	0.05	$\mathrm{n}_{\mathrm{r}}=\frac{242}{\mathrm{n} \lambda^{2}}+1$
		0.10	$\mathrm{n}_{\mathrm{r}}=\frac{190}{\mathrm{n} \lambda^{2}}+1$
		0.25	$\mathrm{n}_{\mathrm{r}}=\frac{128}{\mathrm{n} \lambda^{2}}+1$

Simplified Table

Percent Confidence that a term identified as significant, truly does belong inŝ [ỳ]	Percent chance of finding a significant variance [average] shifting term if one actually exists	Number of Runs in 2 Level Portion of the Design				
		2	4	8	12	16
		Sample Size per Experimental Condition				
95\% ($\alpha=.05$)	40\% (β = .60)	5 [3]	3 [2]	2 [1]	N/A	N/A
95\% ($\alpha=.05$)	75\% (β = .25)	9 [5]	5 [3]	3 [2]	2 [1]	2 [1]
95\% ($\alpha=.05$)	90\% (β = .10)	13 [7]	7 [4]	4 [2]	3 [2]	N/A
95\% ($\alpha=.05$)	95\% ($\beta=.05$)	17 [9]	9 [5]	5 [3]	4* [2]	3 [2]
95\% ($\alpha=.05$)	99\% ($\beta=.01$)	21 [11]	11 [6]	6 [3]	5* [3]	4* [2]

[^3]
For more information please contact

Kathi Swagerty or Mark Kiemele Air Academy Associates, LLC 1650 Telstar Drive, Ste 110 Colorado Springs, CO 80920

Toll Free: (800) 748-1277 or (719) 531-0777
Facsimile: (719) 531-0778
Email: aaa@airacad.com Website: www.airacad.com

Simplify, Perfect, Innovate

[^0]: SPC XL is Copyright (C) 1999-2008 SigmaZone.com and Air Academy Associates, LLC.

[^1]: SPC XL is Copyright (C) 1999-2008 SigmaZone.com and Air Academy Associates, LLC.
 All Rights Reserved. Unauthorized duplication prohibited by law.

[^2]: SPC XL is Copyright (C) 1999 Digital Computations, Inc. and Air Academy Associates, LLC. All Rights Reserved. Unauthorized duplication prohibited by law.

[^3]: * See page M-2 in the Text.

