

U.S. Army Research, Development and Engineering Command

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Bore Elevation and Azimuth Measurement System (BEAMS)

Prepared for Joint Armaments Conference, Exhibition & Firing Demonstration 17 May 2012 by Robert P. Pinto, Fire Control Systems & Technology Directorate

- Designed in response to a request from the Naval Surface Warfare Center (NSWC), Crane Division and PM Mortars for
 - A low-cost means

- Verify the <u>elevation and azimuth</u> weapon pointing accuracy requirements
 - Navy 81mm Mortar Fire Control
 - 120mm M150/M151 Mortar Fire Control Systems Dismounted
- In a field-test environment

Purpose (continued)

Provides a means

RDECOM

- For the fixture to self-center in the weapon tube
- To calibrate and verify that the projection of the tube axis is coaxial to the tube axis

- To measure and/or remove bias from the fixture
- To make measurements
 - In elevation and azimuth
 - High accuracy
 - Utilizing conventional survey procedures
- All of which may be accomplished in an engineering field-test environment

Description of Prior Measurement Techniques

- Artillery and mortar weapon azimuth pointing measurements used a fixture inserted in weapon tube
- The fixture extends the axis of the tube so it can be observed by a single theodolite
- The vertical reticle line of the theodolite must align to **both** the tip and lower reference point at the **same time**
 - Very difficult to do,

007 Award

17 May 2012 (PR)

• especially at high quadrant elevations

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Description of Prior Measurement Techniques (continued)

- Fixtures tend to be
 - Long
 - Subject to damage from bending
 - Cumbersome to use
- Alternatively a line is scribed on the outside of the weapon tube
 - Drawn parallel to the tube axis
 - Scribe lines are difficult to accurately establish
 - If the outer tube wall is not parallel to the tube axis
 - Tube cant measurements need to be made
 - Correction equations for non-parallelism of lines to the weapon axis need to be applied
- Sighting down the side of the weapon tube is also used but
 - It is difficult do

17 May 2012 (PR)

2007 Award

 Error prone since weapon tubes have varying cross sections

BEAMS Laser Fixture

- Incorporates interchangeable lobes which
 - allow for use with any weapon tube caliber, and
 - spring loaded plungers and
 - non-marring brass pads which
 - allow the fixture to self-center on the weapon tube axis

US ARMY

RDECOM

DRIVEN. WARFIGHTER FOCUSED.

BEAMS Laser Fixture (continued)

 Mechanical adjustment allows laser aperture to be positioned on-axis with the weapon bore

RDECOM

- Dial Indicator measures runout as fixture is rotated in 180-degree increments
- Mechanically adjust until runout is eliminated

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

BEAMS Laser Fixture (continued)

 Eye-safe AN/PEM-1 Laser provides projection of the tube axis

RDECOM

- Designed for aligning sights on numerous weapon systems
- Hundreds currently in-use
- Designed to be viewed with magnifying optics
- Contains integral up/down left/right beam adjustments

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

BEAMS Laser Fixture (continued)

 Laser beam adjustment allows laser to be positioned on-axis with the weapon bore

RDECOM

- Theodolite views run-out as fixture is rotated in 180-degree increments
- Beam is adjusted until run-out is eliminated

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

BEAMS Measurements

 Two theodolites, T1 and T2, measure Horizontal (H) and Vertical (V) angles to:

RDECOM

- 1. The other theodolite (once per set-up)
- 2. The laser spot, P1, on the first screen
- 3. The laser spot, P2, on the second screen
- Laser spots can be viewed on a simple paper or Mylar® screen or any convenient surface
- The horizontal angle to the point measured from the opposing theodolite is proportional to the distance
 - That is, the distance from T1 to P is proportional to H of T2
- The vector from each theodolite defines a 3-Dimensional XYZ coordinate of laser point P
- From two points, P1 and P2, the elevation and azimuth of the laser is established

ward

2007 Award

10 of 22

17 May 2012 (PR)

Laser spots enhanced for clarity

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- The computations are automated in an Excel® spreadsheet
- Output shows

US ARMY

RDECOM

- Elevation,
- Azimuth
- Magnitudes of measurement errors
- Intermediate computations
- If fixture is not calibrated -
 - Rotate laser fixture 180-degrees in the bore without moving the tube
 - Make another set of measurements
 - Average of before and after elevations and azimuths are the proper values

D12 •	1	E			0			1/			
ç	U	E	F	6	н		J	ĸ	L	A N	
		B	EAMS DA	TA INPUT	and OUTPU	T					
Data Pair	HT1 DMS	VT1 DMS	HT2 DMS	VT2 DMS	Meas Dif X Mea	ns Dif Y M	eas Dif Z Dif	DP1P2 Av	gHP1P2 AvgV	P1P2	
P1	2424 10 39	2956 25' 44"	1466 33 20*	2858 261561	4.4409E-16 3.33	07E-16 4.	8427E-05 3.32	25E-05 8	5517564 43.32	17688 DEG	
P3	1796 a 55° 70°	1984 TO W	11514 35' 16'	2884 14' 40*	2 77565-16	01.4	404E-061-36	835.06 8	5865957 66 76	35532 DEG	-
P4	2614 37 26	3236 12:00*	1298 22"25"	325d 01*17*	2.11000-101	01.5	1012 001 01	15	2.65059 1009.	12983 mils	
P5 P6		Î			0	0	0	0	0	0 DEG	
P7					0	0	0	0	0	0 DEG	
P8				1					0	0 mils	
P9 P10					0	0	0	0	0	0 DEG 0 mils	
P11					0	0	0	0	0	0 DEG	
P12									0	0 mils	
P13 P14					0	0	0	0	0	0 DEG 0 mils	
P15					0	0	0	0	0	0 DEG	
H N BEAMS	/ instructions	& Terms 🖌 Setu	p & Calibration Data	a Data / Grap	h/	1			U.	0 mins	
• 12 A18 3	rabez 🖌 🦯 🤌			»· <u>2</u> · <u>A</u> ·	= = = = 0 0						
as Dif	X Me	eas Dif \	/ Meas	Dif Z	Dif DP1P	2 A	vgHP1F	2 A	/gVP1P	2	
1409E-	16 3.3	307E-1	6 4.842	7E-05	3.3225E-I	05 8	8.55175	64 43	.321768	38 D	EG
	_		_			45	0040	25 77	0.46477	70	il.

GY DRIVEN. WARFIGHTER FOCUSED.

BEAMS Applications/Adaptations

120-mm MFCS Dismounted testing, April 2008

Light Armored Vehicle Foreign Military Sales pointing accuracy test, June 2009

BEAMS training at Picatinny Arsenal, March 2009

BEAMS adaptation to M119A2, June 2008 – March 2009 National Quality Award 12 of 22 17 May 2012 (PR)

M119A2 Inertial Navigation System Bid Sample Test, September – November 2009

Rapid Response Force Projection System (R2FPS) Mortar Boresight, December 2010

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

M119A2 Howitzer Adaptation

 Worked with PM Towed Artillery Systems to adapt BEAMS to the 105mm M119A2 Howitzer

RDECOM

- Laser fixture for rifled cannon
- Calibration and measurement procedures
- Howitzer Onboard Optical Target Imaging Screen (HOOTIS)
- Rear Yoke Position Laser (RYPL)
- Trained Yuma Test Center (YTC) personnel in BEAMS operation

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

M119A2 Howitzer Adaptation (continued)

 LaserGlow Technologies LBS-532-TD-5 laser

RDECOM

- Extremely high visibility
 - Green is 5-10 times more visible than a red laser
 - Green is not filtered-out by theodolite optics
- Output power <5 mW
- Low divergence at working distances

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

M119A2 Howitzer Adaptation (continued)

Howitzer Onboard Optical Target
Imaging Screen

RDECOM

- A convenient device to hold two translucent Mylar® screens
- Screens are used to view the laser spot
- Screen closest to muzzle flips up so laser can strike second screen
- HOOTIS is placed on the muzzle after laser is inserted in bore

Award 2007 Award Recipient 15 of 22 17 May 2012 (PR)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

M119A2 Howitzer Adaptation (continued)

Rear Yoke Position Laser (RYPL pronounced ripple)

RDECOM

- Provides an independent check of the angular relationship between the Inertial Navigation Unit (INU) mounting plate and the cannon bore
- Utilizes Picatinny Rail for quickrelease
- Angular deviation predicted failure of the rear yoke

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Paladin Application

Paladin Laser Fixture

RDECOM

- Breech fixture using the same principles as original mortar fixture
- Three optical stages provide lateral adjustment in Y and X as well as pitch and yaw of the laser
- The optical stages are mounted on a circular plate
- Same LaserGlow Technologies laser proven on M119A2 Howitzer application

Paladin Adaptation (continued)

- Reverse side of plate supports
 - Three high-pull neodymium magnets contact cannon face
 - Three lobes contact the cannon wall
 - Two lobe assemblies machined to match the radius of the cannon bore
 - Third lobe fitted with a spring loaded plunger
 - Maintains self-centering of the fixture
 - Laser mechanical and optical run-out adjusted similar to the mortar fixture
 - Laser can be adjusted to 0-mils QE when cannon muzzle flat is at 0-mils

US ARMY

RDECOM

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Paladin Adaptation (continued)

Paladin HOOTIS

US ARMY RDECONI

- Truss section weighs less than six pounds
- 12-foot distance between screens
- Mandrel allows HOOTIS to be rotated for better viewing

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Paladin Adaptation (continued)

Integrated BEAMS (iBEAMS)

US ARMY

RDECOM

- Incorporates direct digital communications between the control computer and each of the two theodolites
- Provides automatic data collection from each theodolite
- Directly populates data into the appropriate cells of the iBEAMS Excel workbook
- Eliminates human data transcription errors
- Greatly speeds the measurement process

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

• A compact laser fixture

RDECOM

007 Award

17 May 2012 (PR)

- Accurately self-centers in weapon bore
- Scales to any caliber weapon system
- Calibration & verification that the projection of the tube axis is
 - Coaxial with the tube axis, or
 - At the same QE and azimuth
- Includes a means to measure and/or remove bias from the laser fixture
- Theodolites may be placed at virtually any arbitrary position
 - Theodolites remain in the same place for all testing
- Provides a clearly defined theodolite aim point
 - Utilizes conventional surveying practices
 - Makes precision measurements with an accuracy greater than other current methods – 0.1-mils, 0.05 is achievable
 - Measures elevation and azimuth at the same time

Questions

Visit BEAMS at the RDECOM Booth

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.