Development of a 7.62 mm Armor Piercing (AP) Projectile Using a Lean Design For Six Sigma (LDFSS) Process

GENERAL DYNAMICS
Ordnance and Tactical Systems-Canada

Presented by Le Binh Tran 17 May 2012

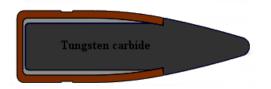
- OBJECTIVE
- APPROACH
- CONCEPTS
- RESULTS
- CONCLUSION

OBJECTIVE

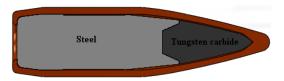
 To study a number of 7.62 mm AP projectile concepts with performances superior to those obtained with the 7.62 mm Improved Penetration (IP – 1038) cartridge.

- Criteria for the new design
 - penetration > 19 mm RHA at 100 m at 0°
 - penetration > 6 mm RHA at 550 m at 0°
 - Same propellant charge and cartridge case as 7.62 mm C21 (Canadian equivalent to US 7.62mm M80)

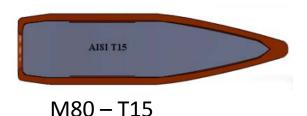
APPROACH


- BRAINSTORMING
 - Several meetings to establish a set of criteria
 - 12 concepts were proposed:
 - Different materials
 - Several geometries
 - Various penetrator and slug combinations
- Used Pugh method to select concepts that satisfy the criteria
- V₅₀ trials for three of the selected concepts

CONCEPTS


– Three most promising concepts selected:

M80 - T1



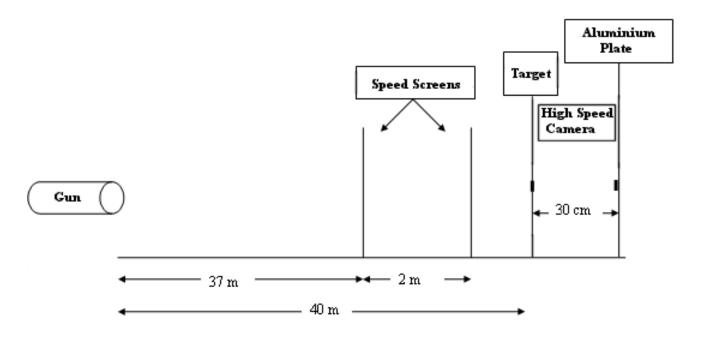
Open Jacket – Tungsten Carbide (WC)

Two Parts – Tungsten Carbide (WC)

 Two more concepts added to understand influence of materials on penetration :

Summary of concepts characteristics

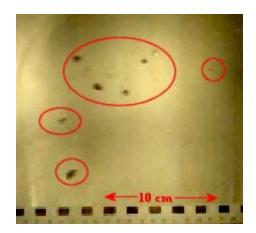
Concepts	IP - 1038	M80 – T1	M80 -T15	Open Jacket – WC	Open Jacket – T1	Two Parts – WC
Total Weight (g)	8.40	8.44	8.40	9.21	9.04	8.46
Penetrator						
Weight (g)	4.91	5.01	4.95	6.31	5.67	1.25
Slug Weight (g)	N/A	N/A	N/A	N/A	N/A	3.85
Total Length						
(mm)	30.84	29.31	29.87	25.48	29.82	29.29
Hardness of						
Penetrator (RC)	57	60	67	71	60	71
Velocity at 24 m						
(m/s)	857	865	865	864	868	867


MODÈLE-ANGLAIS_2012.PPTX

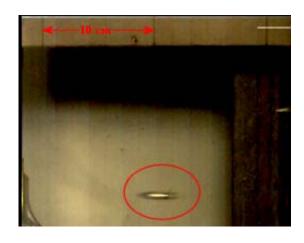
AISI T1 Tungsten c

Steel Tungsten carbide
Ordnance and Tactical Systems–Canada

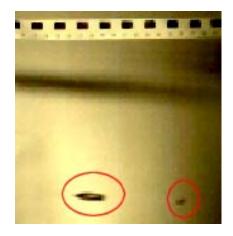
Competitiveness...a daily challenge


- Setup for penetration trial
 - Three different thickness (10 mm, 14 mm and 19 mm) of RHA steel plates
 - Hardness of the steel plate was 300 HB
 - Standard V₅₀ trial setup
 - Impact velocity was measured at 38 m

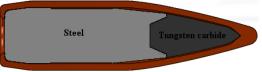
= Break Screen

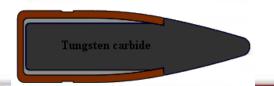

RESULTS

High speed camera pictures of projectiles in flight


Two Parts - WC

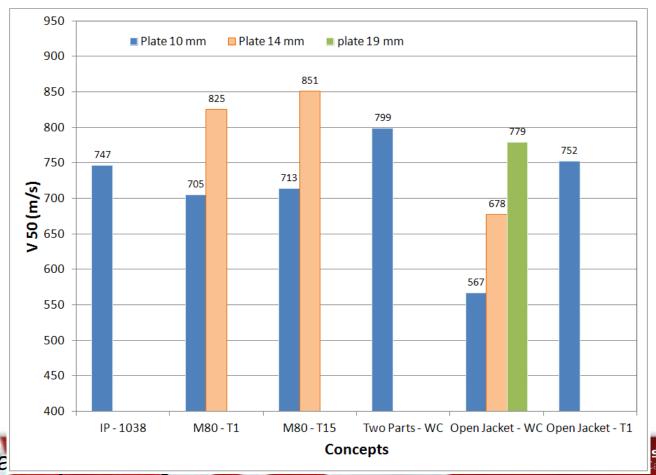
- •10 mm steel plate
- •Impact Velocity: 804 m/s


Open Jacket - WC


- •14 mm steel plate
- •Impact Velocity: 688 m/s

Open Jacket - WC

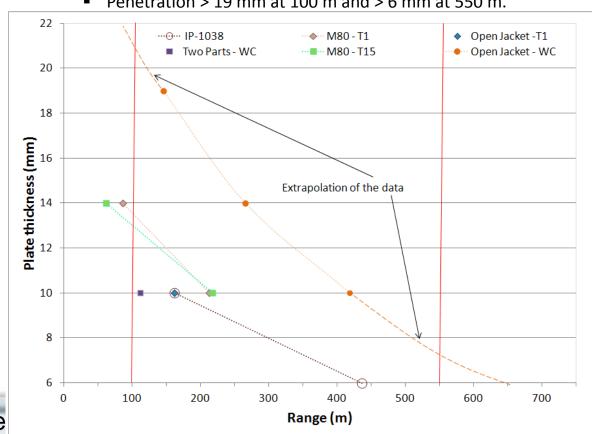
- •19 mm steel plate
- •Impact Velocity: 828 m/s



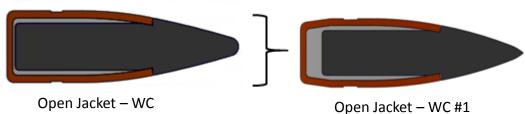
RESULTS

 V₅₀ measured for six rounds that penetrated and six rounds that did not penetrate the steel plates, within a velocity range of 40 m/s.

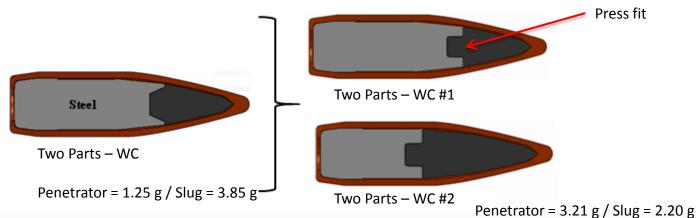
The Reference projectile was the in-house developed, 7.62 mm IP-


1038.

MODÈLE-ANGLAIS 2012.PPTX

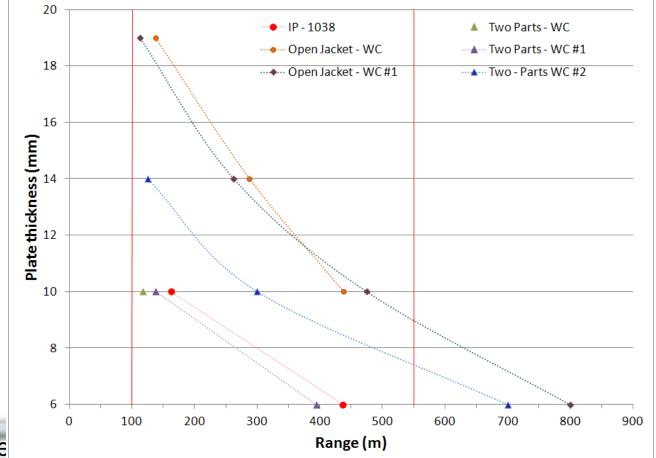

RESULTS

- Range vs plate thickness
 - M80 T1, M80 T15 and OJ WC are superior to the reference concept (IP 1038)
 - OJ T1 shows same performance as the reference concept
 - Two Parts WC is inferior to the reference concept
 - OJ WC performs the best among all concepts
 - Only concept that satisfies the two criteria
 - Penetration > 19 mm at 100 m and > 6 mm at 550 m.



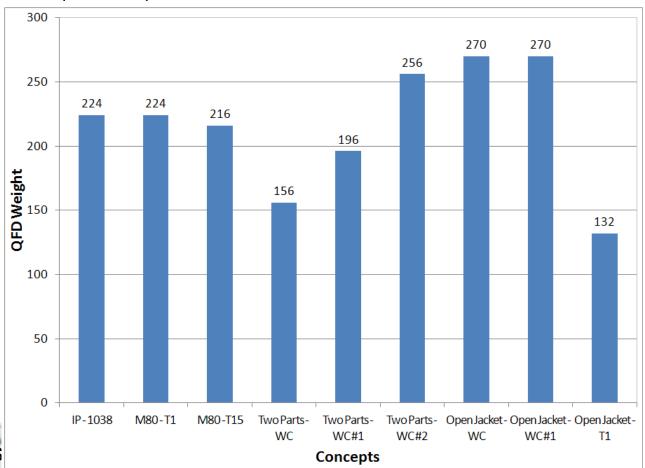
Second iteration

Concept Open Jacket – WC with a more sharper nose (Influence of the geometry)



- Two Parts WC
 - Press fit linkage between the penetrator and the slug (Linkage of the penetrator)
 - Increased weight of the penetrator

MODÈLE-ANGLAIS_2012.PPTX


- Results of second iteration
 - Open Jacket WC and Open Jacket WC #1 show similar results
 - Penetrator geometry has little influence on penetration
 - Press fit linkage has an influence on penetration (Two Parts WC and Two Parts WC #1)
 - Penetrator weight significantly influences penetration (Two Parts WC and Two Parts WC #2)

MODÈLE-ANGLAIS 2012.PPTX

RESULTS

- Used Quality Function Deployment (QFD) to prioritize concepts
- Higher QFD weight
 - Concepts Open Jacket WC and Open Jacket WC #1 were able to satisfy the penetration criteria
 - Concept Two Parts WC #2 was able to penetrate a 14 mm steel plate at > 100 m
 - Concepts IP-1038, M80 T1 and M80 T15
 - Inexpensive to produce

Conclusions

- The types of materials significantly influence penetration
 - Tungsten carbide gives good result (71 HRc).
 - The Hardness plays an important role on the penetration process. However, other mechanical proprieties may also have an influence since T1(60 HRc) and T15(67 HRc) have the same performance
- The weight of the penetrator has a major effect on the performance of the projectile
- The solidification of the linkage (Press fit) shows a better performance since the slug is able to transfer its momentum to the penetrator
- The geometry of the penetrator has little influence

Further Information

GD-OTS Canada

Le Binh Tran
Pierre Lemay (PM)

Location

Repentigny, Quebec Repentigny, Quebec

Phone Number

450-581-3080 450-581-6361

