

2012 NDIA Joint Armaments Conference May 14 - 17, 2012

30mm x 113mm (LW30) High Explosive Incendiary – Tracer (HEI-T)

Drew Gordon Mechanical Design Engineer ATK Armament Systems 763-744-5254 Drew.Gordon@ATK.com Don Gloude Project Engineer ATK Armament Systems 763-744-5253 Don.Gloude@ATK.com

Approved for Public Release OSR 12-S-1469, 22 CFR 125.4(b)(13) Applicable

Outline

- Applications
- Design/Performance Objectives
- Initial Design/Development Phase
- Final Design and Testing
- Summary

Applications

LW30mm M230 Chain Gun®

Currently on Apache helicopter

LW30mm M230LF (Link Fed) Chain Gun®

- Based on proven M230 gun
- Low-recoil design makes gun adaptable to many systems
- Being implemented for ground and shipboard applications

ATK System Application Examples for M230LF

- Invictus[™]
- Palletized Autonomous Weapon System (PAWS)
- Nobles Engineering Viper Gun System

Ground and Shipboard Applications Require Traced Ammo

ATK Invictus™

Design/Performance Objectives

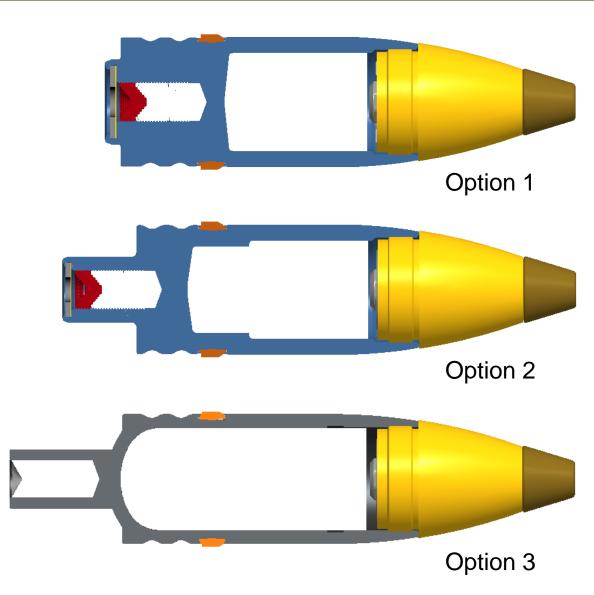
Design Objectives

- Percussion primed ignition system
- Utilize current LW30 components to expedite design and test
- Increased lethality
- Incendiary for increased collateral damage
- Traced
 - Trace distance to 2,000m
 - Daylight & infrared visible

Flight Characteristics

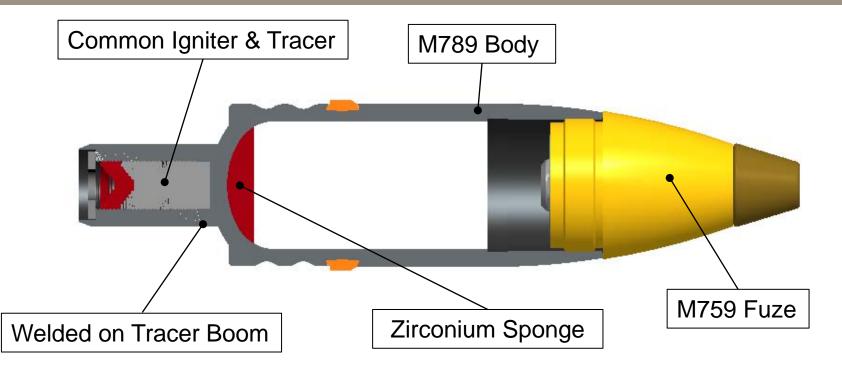
• Flight characteristics to current LW30 ammo

LW30 HEI-T Preliminary Designs Concepts



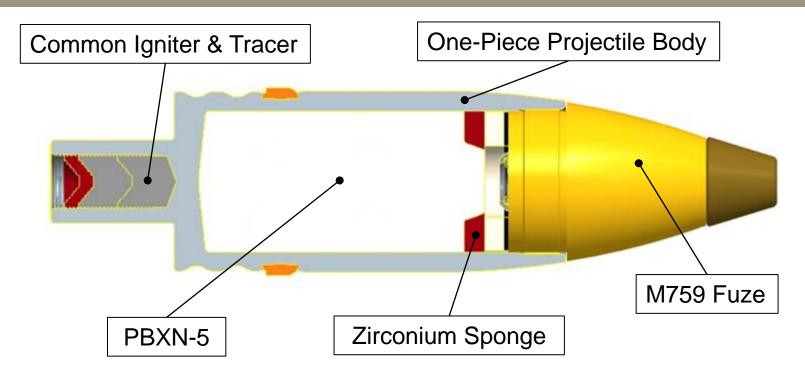
Design Considerations

- Projectile body materials
- Tracer metering disk vs. no metering disk
- Boomtail vs. no boomtail
- High explosive quantities


LW30 Common Components

- M759 Fuze
- PBXN-5 High Explosive
- Tracer & Igniter Composition (LW30 TP-T)

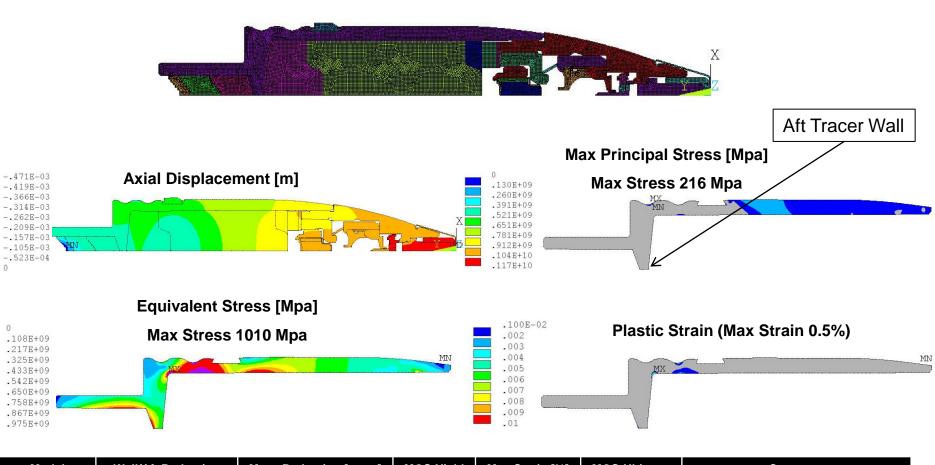
LW30 HEI-T Initial Design (Mod 1)



	Muzzle Velocity (m/sec)	Pressure (Mpa)	Gyro Stability Factor	Muzzle Jump
M789 HEDP	802	285	2.42	0.027
Mod 1	749.5 (est.)	274 (est.)	<mark>0.99</mark> (est.)	0.027 (est.)

"Optimal" range for Gyro Stability Factor = 2 - 3 (Known good at 2 or above for air-based systems) Minimum for margin of safety for Gyro Stability Factor (for ground-based systems) = 1.2 Unstable below 1.0

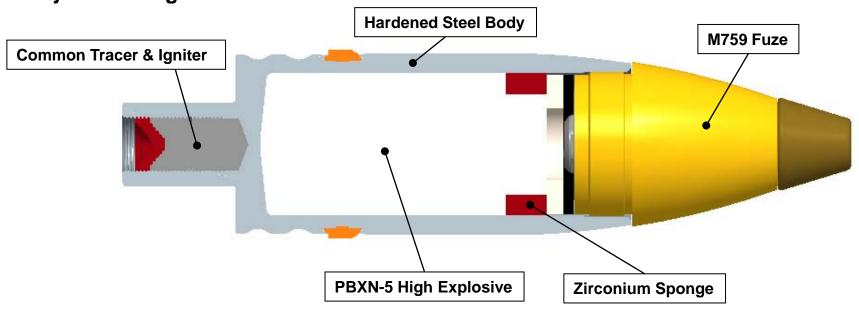
LW30 HEI-T Initial Design (Mod 2)


	Muzzle Velocity (m/sec)	Pressure (Mpa)	Gyro Stability Factor	Muzzle Jump
M789 HEDP	802	285	2.42	0.027
Mod 1	749.5 (est.)	274 (est.)	<mark>0.99</mark> (est.)	0.027 (est.)
Mod 2	753.9 (est.)	266 (est.)	1.53 (est.)	0.03 (est.)

"Optimal" range for Gyro Stability Factor = 2 - 3 (Known good at 2 or above for air-based systems) Minimum for margin of safety for Gyro Stability Factor (for ground-based systems) = 1.2 Unstable below 1.0

Approved for Public Release OSR 12-S-1469, 22 CFR 125.4(b)(13) Applicable

ANSYS FEA Analysis



Model	Wall/Aft Reduction [mm]	Mass Reduction [gram]	MOS-Yield	Max Strain [%]	MOS-Ultimate	Comment
Baseline	0.0	0.00	0.0	0.7	4.5	Adequate Projectile Body
Modification 5	2.0	2.34	0.0	0.9	3.7	Adequate Projectile Body
FINAL	1.8	2.07	0.0	0.5	4.4	Adequate Projectile Body

Approved for Public Release OSR 12-S-1469, 22 CFR 125.4(b)(13) Applicable

Design Changes:

- Optimized projectile body design to minimize weight and increase ease of manufacture based on ANSYS analysis
- HE loading iteration trials to determine consistent/safe loading assembly process

Projectile Design:

Test Plan

- Charge Establishment Complete
- Charge Verification @ 500m Outdoor Range Complete
 - Including target effects data
- PVAT, Dispersion, Yaw, Mann Barrel Function & Casualty
- Max Range Tracer & Radar
- Autogun Function & Casualty

LW30 HEI-T Projectile & Projectile Body

LW30 Target Effects (1/2" Plywood @ 500m)

Standard LW30 M789 ~11.75" Diameter Hole

LW30 HEI-T ~16" Diameter Hole

LW30 HEI-T Target Effects (Multi-Plate Array @ 500m) (ATK)

Impact Plate (4' x 4') 0.063" Aluminum

2nd Plate (8" Behind Impact Plate) 0.040" Aluminum

3rd Plate (16" Behind Impact Plate) 0.040" Aluminum

4th Plate (24" Behind Impact Plate) 0.040" Aluminum

Approved for Public Release OSR 12-S-1469, 22 CFR 125.4(b)(13) Applicable

Summary

Initial Two Designs

- Did not meet ballistic match and flight objectives
- Had producibility and assembly concerns

Final Design

• Simulations and initial testing indicate this will meet ballistic and flight requirements

	Muzzle Velocity (m/sec)	Pressure (Mpa)	Gyro Stability Factor	Muzzle Jump
M789 HEDP (M230)	802	285	2.42	0.027
LW30 HEI-T (M230LF)	801	246	1.68*	0.028

* Gyro stability factor for ground based systems considered stable between 1 and 2

- Anticipate that the additional tracer mix will provide reliable tracer burn to 2,000m
- Structurally robust design (demonstrated in the CE and CV testing)
- Improved producibility and cost savings

?

Jeff Graslewicz (ATK Armament Systems Ammunition Business Development)

- (763) 744-5071
- <u>Jeff.Graslewicz@ATK.com</u>

Don Gloude (ATK Armament Systems Project Engineer)

- (763) 744-5253
- <u>Don.Gloude@ATK.com</u>

Drew Gordon (ATK Armament Systems Mechanical Design Engineer)

- (763) 744-5254
- <u>Drew.Gordon@ATK.com</u>