

U.S. Army Research, Development and Engineering Command

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

History of Fire Control and the Application of Implementing Technologies

Victor Galgano & Ralph Tillinghast May 2012

- Fire Control definition
- The "early years"
- The need for Fire Control
- The application of technologies
- Integrated systems and their advantages
- The Future

FCST

RDECOM) What is Fire Control?

- Acquisition of the target and the implementation of the functions necessary to maximize the effects on target
- The functions

Vational

- Target Acquisition
- Sensing the environment
- Computation

FCST

- Gun / Launcher / Sight Control
- Munitions Interface / Tracking / Data Link
- Network Interface

The Fire Control Functions are Universal

Functions are the same for all weapon systems - their implementation varies as a function of sophistication and automation through the application of technology.

In a basic engagement:

- The human performs all functions
- But is
 - Limited in range capability
 - Limited in low light and poor weather conditions
- And is
 - Stress dependent

FCST

The Early Years

Pre – 1800s

- Line of sight engagements
- Gunner's quadrant invented
- Primitive optical aiming aids
- Adjustment after fire
- Some crude mechanical aids

1801 - 1900

- No fire control inventions at the system level
- Trend toward automation extended to naval gunnery
- Telescopic Rifle Sights introduced

Vationa

1901 - 2000

- Firing Table development (WW I)
- Introduction of mechanical computers in ships 1915
- Causes for errors began to be studied
- System addressed as a whole error budgets
- Significant application of technology in last half of century TECHNOLOGY DRIVEN, WARFIGHTER FOCUSED.

RDECOM) The Need for Fire Control

- Early conflicts occurred at essentially "point blank" range
 - Monitor vs. Merrimack 100 yards
 - Gettysburg 200 yards and less
- Increased ranges up to 10,000 yards at the end of the 19th century placed new demands on
 - Target Acquisition
 - Accuracy

FCST

- Technologies
 - Daylight Optics
 - IR Active
 - IR Passive

RDECOM Target Acquisition Evolution

Radar

National

Acoustics

Active Infrared light source and viewing telescope

The Effect of Increased Ranges

- Inaccuracies introduced due to
 - Target Range estimation errors
 - Effect of weather on longer flight times e.g. wind
 - Drift caused by Rifled barrels
- Increased importance of previous relatively minor effects
 - Atmospheric temperature and pressure
 - Propellant weight and temperature
 - Barrel erosion (effect on Muzzle Velocity)

Compensating for Range

Range estimators

RDECOM

- Human approximately 21% of range
- Stadiametric 12-18%
- Optical Coincidence, Stereoscopic good accuracy (1% @ 2000M), but time consuming
- Laser Ruby (mid 60s); Nd Yag 1.06u
 (1970s); Erbium (eyesafe) (1980s), <5 meters

FCST

Stadia lines imposed in ballistic Reticle

Know target sizes "choked" between stadia lines results in required superelevation

Tank size target

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Exclusive use of Firing Tables 1900 -1935
- Initial use of computers for FT generation 1930s WW II
 - e.g. Bush Differential Analyzer 1935
 - Unable to keep with volume
- ENIAC & EDVAC for FT generation WW II
 - Provided necessary accuracy and flexibility
 - Sparked the computer age

- Computers in a field environment 1970s to present
 - Continuous enhancements in computing capability and memory
 - Ability to interface with and automate sensor inputs
 - Associated Improvements in Trajectory Models
 - Modified Point Mass Solution (1960s)
 - NABK (1990s)

• Expansion of NATO Kernels – NAMK, NIFK, NAGIK (2000-present)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Computational Hardware

US ARMY

DISTRIBUTION STATEMENT A: Approved for public release, distribution unlimited.

RDECON Inertial Pointing Systems

- Accurate pointing <1mil</p>
- With computers, enabled automated laying with no external aids
- System Types
 - Fluid gyro
 - Spinning mass gyro
 - Fiber optic gyro
 - Laser ring gyro
 - MEMs

lationa

Celestial

FCST

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Initially "Line of Sight" only
- Aiming Circles/Aiming Stakes/Collimators
- Sight Units on Weapons reference aiming circles
- Voice Communication only
- Instrument leveling
- Maps/Charts/Protractors at FDC
- Manual Positioning of Weapon
- Adjusted Fire Technique

Digital technology provides significant improvements to Indirect Fire systems

- Digital Link To Fire Support Network
 - Call for Fire
 - Met data
- On-board Ballistic Computation with sensor inputs
- GPS for on-board navigation and location systems
- Accurate auto gun orientation
- Self alignment and orientation
- Automatic Weapon Drives & Control

Enhanced Responsiveness, Accuracy and Survivability

DISTRIBUTION STATEMENT A: Approved for public release, distribution unlimited.

Modern Indirect Fire Control System

US ARMY

RDECOM

調響

FCST

RDECOM Tank Fire Control Evolution

	50's	60's	70's	80's	90's	2000 to Present
FIRE CONTROL COMPUTER	Ballistic Med Reticle Cor	chanical Ana nputer Cor	alog Digi nputer Con	tal Ballistic nputer	Digital Archited Hunter/Killer	cture Ammo Data Link (VSMC)
SENSORS • RANGE	Optical	Rul	oy NdY	ag		
• ENVIRONMENTAL			L	-		
• MUZZLE REFERENCE	E		Optical (Ma	anual)		
• TRACKING		Rate	5			
ACQUISITION	Hard Ima Optics Cor	ge Ima overters Inte	ige ensifiers The A	rmal 1st Gen.	FLIR 2nd	Gen. FLIR
STABILIZATION		Gui	Sight n (1 Ax	is)	Sight (Dual Axis))

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

DISTRIBUTION STATEMENT A: Approved for public release, distribution unlimited.

Modern Direct Fire System M1A1 Abrams FC

Application Software

DISTRIBUTION STATEMENT A: Approved for public release, distribution unlimited.

FCST

Emphasis on software algorithms/networking

- Battlefield Decision Aids
- Information Fusion
- Sensor Fusion
- Tracking and commanding smart munitions
- Emphasis on SWAP
 - Reduced size, weight and power, *e.g.* MEMs
 - Efficient functional and physical integration
 - Large system capabilities available for dismounted Soldier

Contact Info:

Victor Galgano

Manager, Business Planning & Development Fire Control Systems & Technology US Army ARDEC, RDAR-WSF-B 973.724.6021 victor.galgano@us.army.mil

Ralph Tillinghast

Collaboration Innovation Lab Lab Director Fire Control Systems & Technology US Army ARDEC, RDAR-WSF-M 973.724.2095 ralph.tillinghast@us.army.mil

Questions?

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

DISTRIBUTION STATEMENT A: Approved for public release, distribution unlimited.