Laser Pointer for Shoulder Fired Weapons

An Evolving Capability for the User

NDIA Presentation May 15, 2012 Washington State Convention Center – Seattle, WA Mr. Kevin Thomas Nammo Talley, Inc. Mesa, Arizona

M72 LAAW 66 mm Shoulder Fired Weapon Family

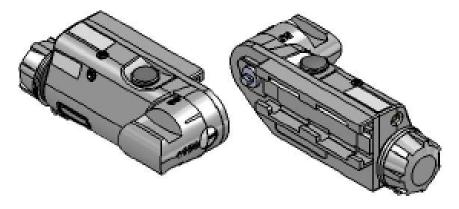
Disposable Anti-Armor & Anti-Structure Weapons

Background

- Partnership formed with Crimson Trace Corp. (CTC) to develop a laser pointer system for use on M72 66 mm Family of Shoulder Fired Rockets
 - Based on CTC commercial laser technology
 - Range adjustable to match weapon (M72A7, M72A9)
 - Low cost, disposable
 - CTC investment in design and test hardware
 - Nammo Talley investment in integration and testing
- Prototype hardware built and demonstrated in 2010
 - QE adjustment capability
 - Establish located on launcher
 - Firing demonstration on Trainer Launcher
 - Draft performance spec and qualification plan
 - Refined size, launcher interface and human factors

Design Overview

Forward mounting best ergonomic option


Requirements

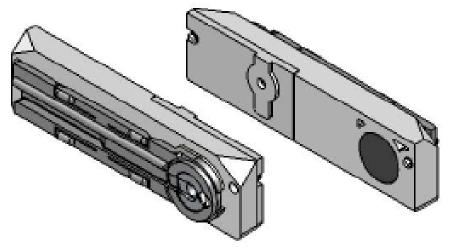
- Sample Performance Specifications
 - Eye safe laser, Visible Red and Invisible IR options
 - Commercial technology, i.e. low cost
 - Selectable range settings
 - Powered by commonly available battery, replaceable
 - ±3 Mils system accuracy
 - Disposable but Laser Pointer reusability highly desired
 - Capable of surviving typical M72 environments
 - High and Low Temp Storage
 - Humidity
 - Temperature Shock
 - Vibration
 - Water Immersion
 - Salt Fog
 - Sand and Dust
 - 1.5M Drop

Design Overview – cont'd

- Laser Pointer
 - Source Controlled from CTC
 - Eye safe Class 3R Red and Class 1 IR laser options
 - Range adjustment 50-200M, 25M increments
 - Interchangeable to A7, A9 or other variants
 - Single AA battery, on/off button activation
 - Quick attach/detach to Range Plate
 - Intended to be disposable but proves to be reusable
 - Mostly injection molded glass reinforced urethane plastic
 - Aligned at factory (CTC)
 - Comes complete with sheath, battery, manual
 - Intended to be sold/shipped separate from Launcher

Design Overview

• System consists of Laser Pointer and Range Plate

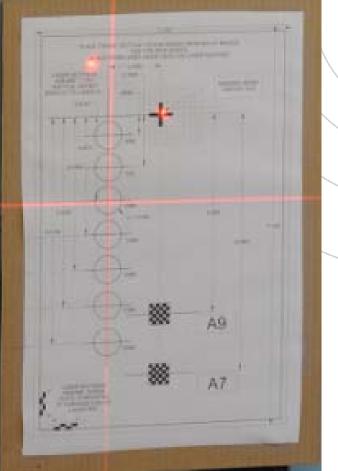

Background – cont'd

- 2nd iteration of prototype hardware demonstrated
 - Smaller unit
 - Refined human interfaces
 - Improved QE adjustment capability
 - Improved human interfaces
 - 2nd demonstration firing with prototype hardware
 - Good results
- Development IRAD kicked off Q1 2011
 - Funding for completion of design and qualification
 - Includes non-recurring cost for manufacturing integration
 - High probability to be included in GOI contract
- CTC kicks off production tooling Q1 2011

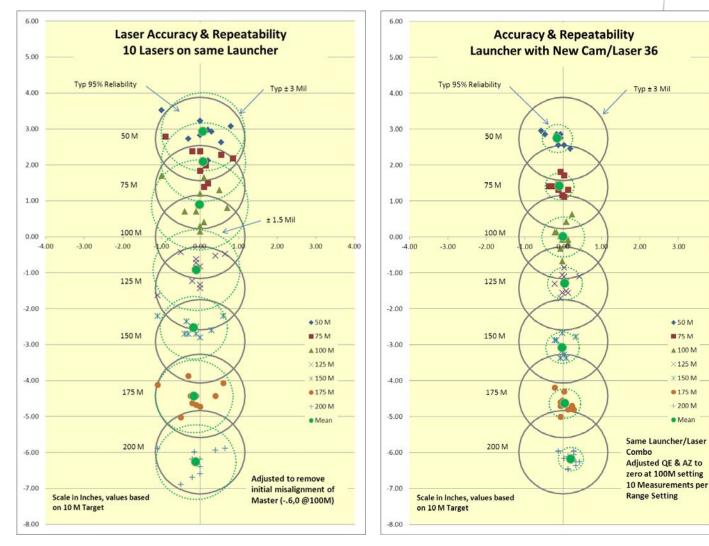
Design Overview – cont'd

- Range Plate
 - Source Controlled from CTC
 - Contains cam for QE adjustment, unique to A7, A9, etc.
 - 50-200M, 25M increments
 - Keyed for mating with Laser Pointer
 - Mostly injection molded glass reinforced urethane plastic
 - Bonded to Launcher with screw and epoxy
 - Aligned during installation on Launcher (Nammo Talley)
 - Launcher mounted on mandrel with bore laser
 - Pivots on screw for QE adjustment
 - Set screws for AZ adjustment

Manufacturing Overview


- Range Plate Installation to Launcher
 - Launcher mounted on mandrel
 - Mandrel contains bore spotting laser to target on wall
 - Camera and monitor used to assist in alignment
 - "Master Laser" used to align Range Plate at 100M setting
 - Master is slightly modified version of production
- Process is conducive to retrofit of Launchers in field

Manufacturing Overview – cont'd



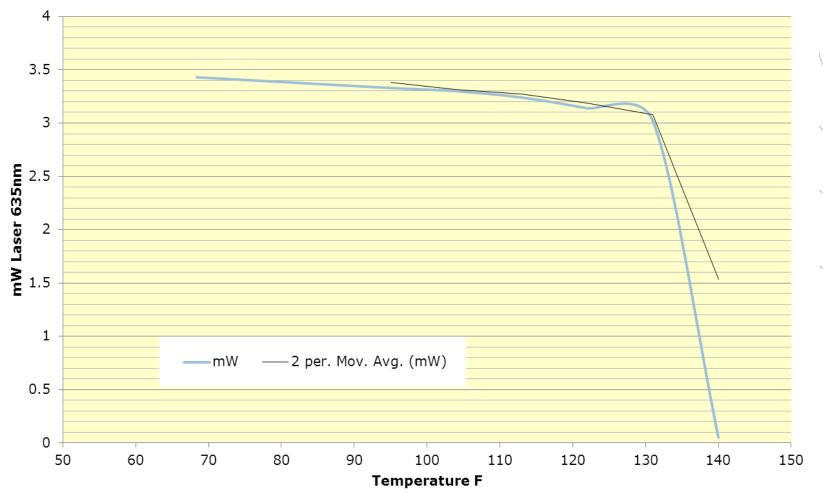
Engineering Test Data - cont'd

Accuracy and Repeatability

4.00

Engineering Test Data - cont'd

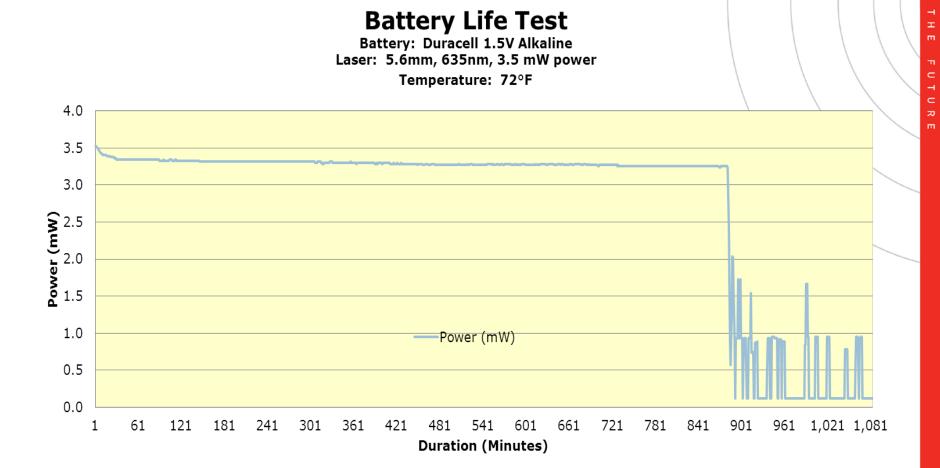
- Environmental conditioning
 - High and Low Temp Storage, Temp Shock, Loose Cargo Vibration, Drop
 - Water Immersion, Humidity
- Conclusion
 - Launcher remains safe during after temp storage, temp shock, loose cargo vibration, drop
 - Laser will break away during cold drop, slight damage at hot
 - Laser continued to work
 - Humidity and water immersion acceptable for Launcher, slight corrosion on Laser battery but still functional
 - Laser drop caused slight sonic weld break and affected alignment


Engineering Test Data - cont'd

- Electrical
 - ESD and EMC
 - Battery life
 - Power operating range (temperature limits)
- Conclusion
 - Passed ESD and EMC
 - Battery life 14 hrs at ambient
 - Power drop off at ~135°F but reversible when cooled
 - Operating range of diode is 14 to 122°F
- Actions
 - Determine battery life at hot and cold

Engineering Test Data – cont'd

Laser Power \ Temperature Relationship



SECURING THE FUTUR

Engineering Test Data – cont'd

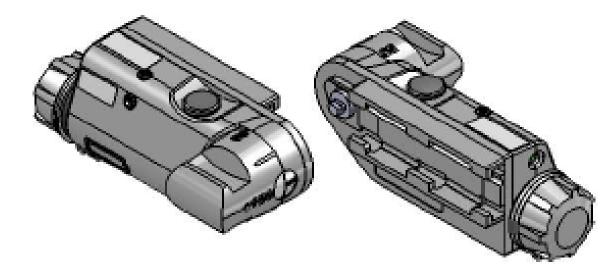
• Battery Life approximately 14 hours at ambient

m

R

Z G

16


Qualification Testing

- Qualification plan included
 - System Safety
 - System Operation
 - Laser Pointer Operation
 - Laser Pointer Electrical
 - System Live Firing
 - System Durability
- Qualification Completed September 2011
 - Successfully met all criteria

Conclusion

• System entered serial production in March 2012

