

If you can't get a bigger target ...

# Test Options & Analysis Techniques: Aerodynamic Coefficients:

#### What's Important & How Can I Measure Them?

Jeff Siewert Systems Engineer Arrow Tech Associates, Inc. 1233 Shelburne Rd. Suite D-8 S. Burlington, VT 05403 802-865-3460 x19 jsiewert@prodas.com





- What's Important & Why?
- Data Acquisition Options
- Accuracy & Cost Comparison
- Summary and Conclusions

# ARROW TECH > What's Important & Why?

If you can't get a bigger target...

| Aerodynamic<br>Coefficient / Item | Symbol                               | <b>Description &amp; Affects</b>                                                                                       |  |  |
|-----------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Zero Yaw Drag<br>Force            | C <sub>X0</sub>                      | Acts along projectile axis; Deceleration & retained velocity, minor affect on dispersion                               |  |  |
| Yaw Drag Force                    | C <sub>X2</sub>                      | Added drag factor along proj. axis; Decel. & retained velocity of yawing bullet                                        |  |  |
| Normal Force<br>Derivative        | $C_{N\alpha}$                        | Acts in plane of angle of attack; Causes<br>swerve motion of yawing bullet, dispersion.<br>Influences dynamic stabilty |  |  |
| Magnus Force                      | $C_{YP\alpha}$                       | Out of plane force from spin; source of the destabilizing Magnus moment                                                |  |  |
| Pitching Moment<br>Derivative     | C <sub>ma</sub>                      | Acts in the plane of angle of attack; influences<br>Gyroscopic Stability & Dispersion                                  |  |  |
| Pitch Damping<br>Moment           | C <sub>mq</sub>                      | Acts counter to pitching moment; affects Dynamic Stability                                                             |  |  |
| Spin Damping<br>Moment            | C <sub>lp</sub>                      | Acts counter to projectile spin; affects down range gyroscopic stability                                               |  |  |
| Roll Moment<br>Product            | C <sub>ld</sub> D                    | Roll moment coefficient x fin cant angle:<br>Increases/maintains projectile spin rate                                  |  |  |
| Magnus Moment                     | Cnpa                                 | Acts perpendicular to the plane of the angle of attack; affects Dynamic Stability                                      |  |  |
| GN&C Forces &<br>Moments          | CN <sub>α</sub> /<br>Cm <sub>α</sub> | Typically Increases Angle of Attack to provide<br>maneuver authority                                                   |  |  |

### What can you afford to ignore?

# ARROW TECH > What's Important & Why? If you can't get a bigger target

If you can't get a bigger target...

Jump Equation (Dispersion)

$$\Theta_{j} = \left[ \left( \frac{C_{N\alpha} - C_{D}}{C_{m\alpha}} \right) \left( \frac{I_{y} - I_{x}}{md^{2}} \right) \left( \frac{d}{V_{m}} \right) \left( \alpha_{g} \bullet p_{m} \right) \right]^{2} + \left[ \Delta_{CG} \bullet \frac{p_{m}}{V_{m}} \right]^{2} \right]^{\frac{1}{2}}$$

- Gyroscopic Stability Equation  $S_{gp} = \frac{(2)(I_X^2)(p^2)}{(\pi)(\rho_0)(I_y)(C_{m\alpha})(p^3)(V_m^2)}$
- Dynamic Stability Damping Exponents

$$\lambda_{F} = \frac{\rho A}{4m} \left[ -C_{N\alpha} (1 \frac{1}{\sigma}) + (k_{2}^{-2} / 2)(1 + \frac{1}{\sigma})C_{mq} + (k_{1}^{-2} / \sigma)C_{np\alpha} \right]$$
  
$$\lambda_{S} = \frac{\rho A}{4m} \left[ -C_{N\alpha} (1 + \frac{1}{\sigma}) + (k_{2}^{-2} / 2)(1 - \frac{1}{\sigma})C_{mq} - (k_{1}^{-2} / \sigma)C_{np\alpha} \right]$$

What's Important & Why?

If you can't get a bigger target...

RROW TECH

• Deceleration 
$$dV/dX = \frac{1000\rho VAC_x}{2m}$$

• Steady State Roll Rate (Statically Stable Bullets)

- 
$$C_{I\delta}\delta = (pd/2V)C_{Ip}$$
 or:  $\frac{-2C_{I\delta}\delta}{dC_{Ip}} = p_{steady state}$  (rad/m)



If you can't get a bigger target...

# What are my Aero Data Acquisition Options?

- Witness & Yaw Cards
- Doppler Radar
- Wind Tunnel (& Variants)
- Spark Range
- On-Board Telemetry (Yawsonde, Magsonde, etc..)
- Data "Fusion"



Witness Cards

If you can't get a bigger target...

#### Simple paper target at convenient distance from gun

- Aim point & projectile impact points
- Limited examination of projectile angle of attack info

### **Provides:**

- Dispersion & MPI distance from Aim Point estimates
- Evidence of in-flight stability or projectile damage
- Point value angle of attack not recorded by acoustic targeting systems...

(verification of stable, low yaw flight)

### **ARROW TECH Witness Card Example**



- Record of aim point and impact point of various shots...
- Impact in upper right was aimed at center of adjacent target, exhibits large angle of attack @ 50 yards



If you can't get a bigger target ...

### **Yaw Cards**

Spacing determined by: estimated yaw period/8

### Series of target cards

 Record total angle of attack & pointing vector change vs. distance from muzzle

#### Advantages:

- Simple technique
- Low cost "instrumentation"

#### **Provides:**

Pitching moment, pitch damping, Magnus moment, roll moment, roll decay moment

Line of Fire

- Is yaw causing dispersion or only MPI shift?

#### Drawbacks:

- Need sufficient yaw to allow observation (Yaw Inducer Needed?)
- Yaw card impact affects projectile motion







# ARROW TECH > Yaw Card Diagnostics

If you can't get a bigger target...



"Planar" Motion Caused by In-Bore Disturbances

**Coning Motion External Disturbance Source** 



# **Doppler Radar Testing**

If you can't get a bigger target...

(Radar image courtesy of Infinition, Inc.)





# **Radar Testing**

If you can't get a bigger target...





- Point-point initial solution
- Simulate Trajectory via 4 DoF.
- Compare Vel-Time of Simulation to Experimental Data.
- Iteratively Adjust Drag Coeff Until Difference between Simulation & Experiment is minimized.
- Assess groups of like projectiles to determine statistical behavior (Mean & sigma of MV & Drag).

0 + 0

5

Arrow Tech Assoc-ATPLOT 06/01/2005

10

15

Time (seconds)

20

25

30

35



#### **Moving Parts**



- Various flight dynamic problems nave characteristic signatures that can be rapidly categorized & diagnosed w/ Doppler Radar
- Spin reflector can be used to obtain C<sub>lp</sub>, C<sub>ld</sub>Delta...

May 2012

2012 NDIA Joint Armaments

**Structural Resonance** 



If you can't get a bigger target...



Range from "home made" subsonic to precision supersonic blow-down or steady state tunnels

Provides: Normal force coeff., pitching moment, roll moment, roll decay moment.

Drawbacks:

- Pitch damping moment, Roll moment, roll damping moment determination are contaminated by bearing friction....
- "Sting" or support muddles base flow subsonically

#### ► ARROW TECH →

# "Captive Free Flight"

- Fasten model to low friction bearing (e.g. sailboat "windex")
- Affix to appropriately modified vehicle
- Drive (moderately fast)
- Disturb model & record oscillation frequency (time base on video..)
- Pitching moment, pitch damping moment can be extracted from data





# **Aeroballistic Range**

If you can't get a bigger target...





- Concept:
  - Orthogonal Photographs of Projectile Shadow from "Spark" Sources
  - Fit 6 DoF Coefficients to Observed Flight Motion in Series of Photos



2012 NDIA Joint Armaments



## **Aeroballistic Range**

If you can't get a bigger target...



- Positive Aspects
  - Full Scale Testing (5.56mm to 200mm)
  - Excellent Mach Number Control
  - Reynolds Number Match
  - Direct Observation of Angular-Translational Motion
    - > Motion Growth Damping
  - Initial Conditions / Initial Motion Match Real World

#### Negative Aspects

- Exact Angle of Attack, Roll Orientation cannot be precisely controlled
- Apogee / Terminal Conditions (Spin/ Velocity) not matched
- Low Velocity Tests of High Velocity Projectiles do not match rotating band wear conditions





### Yawsonde/Dfuze Testing

If you can't get a bigger target...

#### **On-Board Telemetry Hardware**



Aeroballistic Diagnostic Fuze



**Instrumented 2.75-inch Rocket** 

#### In conjunction with Doppler Radar



The INERTIAL SENSOR SUITE BOARDS are mounted within the FUZE bodies so that the field of view of SLIT #1 lies in the I,+K half-plane.





### What Methods for Which Coefficients?

| Aerodynamic<br>Coefficient/ Item | Symbol                               | Yaw<br>Card   | Doppler<br>Radar | Wind<br>Tunnel | Spark<br>Range | On Board<br>Telemetry |
|----------------------------------|--------------------------------------|---------------|------------------|----------------|----------------|-----------------------|
| Zero Yaw Drag<br>Force           | C <sub>X0</sub>                      |               | X                | X              | X              | v                     |
| Yaw Drag Force                   | C <sub>X2</sub>                      |               | Χ                | Χ              | X              |                       |
| Normal Force<br>Derivative       | $C_{N\alpha}$                        |               |                  | X              | X              |                       |
| Magnus Force                     | Cypa                                 |               |                  |                | X              |                       |
| Pitching Moment<br>Derivative    | C <sub>mα</sub>                      | X             |                  | X              | X              | X                     |
| Pitch Damping<br>Moment          | C <sub>mq</sub>                      | X             |                  | X              | X              | Х                     |
| Spin Damping<br>Moment           | C <sub>lp</sub>                      | X<br>(Finner) | X                | X              | Х              | X                     |
| Roll Moment<br>Product           | C <sub>ld</sub> D                    | X<br>(Finner) | X                | X              | X              | X                     |
| Magnus Moment                    | Cnpa                                 |               |                  |                | X              | X                     |
| GN&C Forces &<br>Moments         | CN <sub>α</sub> /<br>Cm <sub>α</sub> |               |                  |                | X              | X                     |

- Combinations of non-spark range techniques can provide all aeros
- Limitations (size, cost, range availability, etc) determine choices...

### Aero Data Acquisition Options Cost & Accuracy Summary

If you can't get a bigger target...

RROW TECH >

| Measurement        | Caliber                      | Goal                                                 | Accuracy                                                                                                         | Data Acquisition                                                                                          |
|--------------------|------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Option             | Applicability                |                                                      |                                                                                                                  | Cost / Shot or run                                                                                        |
| Witness Card       | All                          | Dispersion & MPI                                     | ~ Location, 0.010"                                                                                               | Pennies                                                                                                   |
| Yaw Card           | All                          | Static & Dynamic<br>Stability                        | ~ <u>+</u> 15-25%                                                                                                | \$2-\$10 depending on setup<br>& shots fired                                                              |
| Doppler Radar Data | All                          | Drag & Muzzle<br>Velocity                            | $\pm 1.5\%$ on drag,<br>$\pm 0.1$ m/sec on MV                                                                    | \$20-\$100/shot if<br>equipment/operator is<br>leased, less if owned.                                     |
| Wind Tunnel        | Med & Large                  | Normal Force,<br>Pitching Moment                     | $\pm$ 3-5% on most<br>aeros, 15-25% on<br>Pitch damping, roll<br>damping, Magnus<br>moment                       | \$10-\$50 and up, + setup<br>fees                                                                         |
| Captive Flight     | All, limited Mach<br>Numbers | Normal Force,<br>Pitching & Pitch<br>Damping Moments | <ul> <li><u>+</u> 1 -20% low</li> <li>subsonic Pitching</li> <li>&amp; Pitch damping</li> <li>moments</li> </ul> | \$5-\$25/ run                                                                                             |
| Spark Range        | All                          | The whole smash                                      | Best available                                                                                                   | \$2000-\$2500/shot                                                                                        |
| On-Board Telemetry | Med & Large                  | Everything but<br>Normal Force<br>Coeff.             | Good for<br>everything but<br>Normal Force<br>Coeff.                                                             | \$800-\$25000/shot<br>depending on<br>infrastructure, etc. required<br>for test. Radar coverage<br>req'd. |

#### • What are my aero coeff. collection requirements?

### **Summary & Conclusions**

If you can't get a bigger target...

**BROW TECH** 

- Numerous options available to all munitions engineers to measure actual aerodynamic coefficients, regardless of caliber
- Coefficient measurement accuracy is generally proportional to cost, but good measurements can be made inexpensively in a wide variety of cases
- "Cut-and-try", especially with small caliber ammunition, is no longer cost effective for schedule reasons; scientific methods can be brought to bear at reasonable costs
- "Simulate the test" can prevent test repeats
- Competent testing early in the program can uniquely identify specific function problems, helping ensure project stays on schedule & under budget
- "Right Sized" test program provides the Right Response