

Modeling and Simulation for Guided Mortar Projectiles May, 2012

Michael J. Wilson, PhD Arrow Tech Associates South Burlington, VT 05403 802-865-3460x14 mike@prodas.com

Projectile GNC

ARROW TECH > If you can't get a bigger target...

High fidelity modeling and simulation is critical for the success of guided projectiles!

GNC Design - 60mm Guided Mortar

Flight CONOPS

Novel Guidance

- Guidance algorithm must take advantage of ballistic trajectory
- Do not want to fight gravity
- Additional trajectory shaping can improve angle of fall

Aerodynamic Model

Direct Table Lookup Coefficients

- Extremely versatile capture any asymmetries and nonlinearities
- Wind tunnel / CFD compatible format
- High angle of attack

$$F_{z} = \overline{q}A\left(C_{z} + \frac{pd}{2V}C_{zp} + \frac{qd}{2V}C_{zq}\right)$$
$$m = \overline{q}Ad\left(C_{m} + \frac{pd}{2V}C_{mp} + \frac{qd}{2V}C_{mq}\right)$$

Polynomial Approximations

- Physics-based simplifications
- Spark range / aero predictor compatible format
- Flight test data reduction parameter fits

$$F_{z} = \overline{q}A\left(-\left[C_{N\alpha} + C_{N\alpha3}\sin^{2}\overline{\alpha}\right]\frac{w}{V} - \frac{pd}{2V}C_{Yp\alpha}\frac{v}{V} + \frac{qd}{2V}C_{Nq}\right)$$
$$m = \overline{q}Ad\left(\left[C_{m\alpha} + C_{m\alpha3}\sin^{2}\overline{\alpha}\right]\frac{w}{V} + \frac{pd}{2V}C_{np\alpha}\frac{v}{V} + \frac{qd}{2V}C_{mq}\right)$$

Error Budget

ARROW TECH > If you can't get a bigger target...

• 3 Types: Mission-to-Mission, Weapon-to-Weapon, Round-to-Round

Accuracy Results

ARROW TECH > If you can't get a bigger target...

- Monte Carlo trials based on error budget
- CEP50 vs. CEP90
- Randomizing
 - Missions
 - Weapons

Cross Range Miss (m)

- Rounds

Down Range Miss (m)

Beyond Concept Development

Shifter Quan Delete Elev Geo Base Adv Edit

E F

PRODAS Environment

Modeling

- Projectile Modeler
- Aero Prediction
- Mass Properties
- Rocket Motor
- Initial Conditions
- Error Budgets
- MET

MATLAB/Simulink Environment

Visualization

- 3D Animations
- Extensive Plotting

Development

- Leverage All MATLAB/Simulink Toolboxes and Blocksets
- Focused Effort on GNC Design

Simulation

- Validated 6+DOF Trajectory Engine
- Seamless Data Interface and Execution Between PRODAS and MATLAB

Product Tests

Hardware-In-the-Loop (HIL)

• Use the same simulation to drive the HIL fixture

Embedded Code Generation

 Automatically generate flight code from the Simulink model

Fire Control

 Simulation software is the basis of fire control software

