

Advancements in Lightweight .50 Caliber Ammunition

Presented By:

Mr. Jarod Stoll Mechanical Engineer Ph: (812) 854-8751

Email: jarod.stoll@navy.mil

Ms. Kathryn Hunt **Chemical Engineer** Ph: (703) 432-8768

Email: kathryn.hunt@usmc.mil

Background

- Initially a Small Business Innovative Research program out of Marine Corps Systems Command 2004-2007 for lightweight ammunition.
- Transitioned to a Title III program to develop a domestic production capability for lightweight polymer based ammunition.
- Title III contract awarded to MAC, LLC, located in Bay
 St. Louis, MS on 18 September 2008
 - ➤ Focus was on the development, production, and qualification of lightweight .50 caliber ammunition

- MK 323 MOD 0
- Cartridge Design
 - Hybrid cartridge case
 - ➤ Brass base cap
 - ➢ Polymer caselet
 - M33 projectile
 - WC 869 Propellant
 - No. 35 Primer
- Packed 100 linked cartridges per M2A1 ammunition can

MK 323 MOD 0

Cartridge Performance

- Meet or exceed the ballistic requirements of M33 per specification MIL-DTL-10190F
 - Chamber Pressure
 - ➤ Muzzle Velocity
 - > Action Time
 - > Accuracy
- Function in all fielded weapon systems (i.e. M2HB, GAU 21/A, etc.)

Benefit

- 25 % weight savings over conventional brass cased ammunition
- Given the large number of platforms and missions, operational benefits of lightweight ammunition vary
- Biggest payoffs in weightcritical scenarios:
 - > Increase effectiveness, due to larger quantity of rounds carried
 - Fewer reloads
 - Operational flexibility carry more equipment
 - Increased operational range
 - Reduced fuel consumption
 - Less fatigue to personnel

Cartridge Development and Challenges

- Initial development work conducted exclusively with the M2HB
- As a drop-in replacement for M33, the MK 323 had to be functional in all .50 caliber platforms
- XM218 and GAU 21/A were introduced
 - ➤ Initial testing revealed the cartridge could not endure the higher rate of fire aircraft weapons
 - Projectile setback in cartridge case
 - Case separation at the joint between the brass cap and polymer caselet.
 - » Case separation caused by combustion gases entering the interface between the polymer cartridge caselet and the brass base.
 - ➤ Issue was corrected by a change to the internal geometry of the case to completely seal the interface.

Program Status

- Cartridge design has been frozen
- Test and Evaluation Master Plan (TEMP) in process
 - ➤ TEMP includes performance testing and required safety qualification testing for future fielding.
 - ➤ 90% complete with the initial performance testing against the baseline M33 ball round.
 - Safety qualification testing anticipated start of July 2012

Distribution Statement A – Approved For Public Release

Initial Performance Testing

MK 323 Lot: BYS12B264S-001

M33 Lot: LC-10D406-994

Chamber Pressure, Muzzle Velocity, and Action Time

➤ Conducted in accordance with SCATP-7.62mm

Ammunition		Pressure	Velocity		Action Time
Туре	Temperature	Mean (psi)	Mean (fps)	Std Dev	Mean (ms)
M33	+ 70F	53,359	2,881	15	1.471
	- 25F	47,150	2,720	24	1.581
	+ 145F	57,220	2,996	16	1.431
MK 323	+ 70F	50,648	2,852	11	1.467
	- 25F	53,324	2,849	20	1.506
	+ 145F	43,867	2,789	9	1.529

➤ MK 323 provides greater temperature stability in the two lots compared

Initial performance testing (continued)

- Accuracy and Ballistic Match
 - > Testing conducted at 600 yards
 - > 5 10 round groups out of two 36" accuracy test barrels

Accuracy Results						
100 Round Mean	M33	MK 323				
Extreme Spread (in)	22.2	19.0				
Standard Deviation (in)	5.9	4.9				
Mean Radius (in)	7.2	5.9				

- ➤ Mean Point of Impact (MPI) taken from each 10 round group
- ➤ 6.8 inch average disparity in vertical MPI across both barrels

Initial performance testing (continued)

Function and casualty

Function & Casi	Temperature			
Test Weapon	Mount	-25°F - 5°F	+70°F ± 5°F	+145°F + 5°F
M2 Heavy Barrel #1	MK 93	1000	2000	1000
M2 Heavy Barrel #2	MK 93	1000	2000	1000
XM218, GAU 16/A #1	Aircraft	1000	2000	1000
XM218, GAU 16/A #2	Aircraft	1000	2000	1000
GAU 21/A # 1	Aircraft	600	1200	600
GAU 21/A # 2	Aircraft	600	1200	600
GAU 21/A # 3	Aircraft	600	1200	600

- ➤ All testing through the M2HB has been completed.
- Remaining weapons still to be completed
- ➤ Three cartridges at -25 F had a mid case split resulting in a weapon stoppage
 - Root cause has been identified and corrective action being taken

Function and casualty M2HB

Function and casualty GAU 21/A

Distribution Statement A – Approved For Public Release

Initial performance testing (continued)

- Hot gun cook-off
 - > 400 cartridges of M33 were fired in rapid succession through a M2HB to bring barrel temp to 600 F
 - ➤ MK 323 cartridge was chambered and allowed to soak for 5 minutes
 - If no cook-off occurred, round was fired.
 - > A total of 5, MK 323 rounds were tested with no cook-offs occurring

Distribution Statement A – Approved For Public Release

Future Events

- Conclude baseline performance testing
- Environmental series testing and post test firings
- Hazard Classification Testing
- Pending successful completion of testing, WSESRB review and other associated full qualification activities

Path forward

- Load alternative projectiles e.g., Tracer, AP, and API, SLAP, etc.)
- Alternative calibers could be developed from the technology such as 5.56mm, 7.62mm, .300 Win Mag, and .338 Lapua Mag
- Testing has indicated potential improvements in precision fire capability over brass case cartridges

Questions?

16