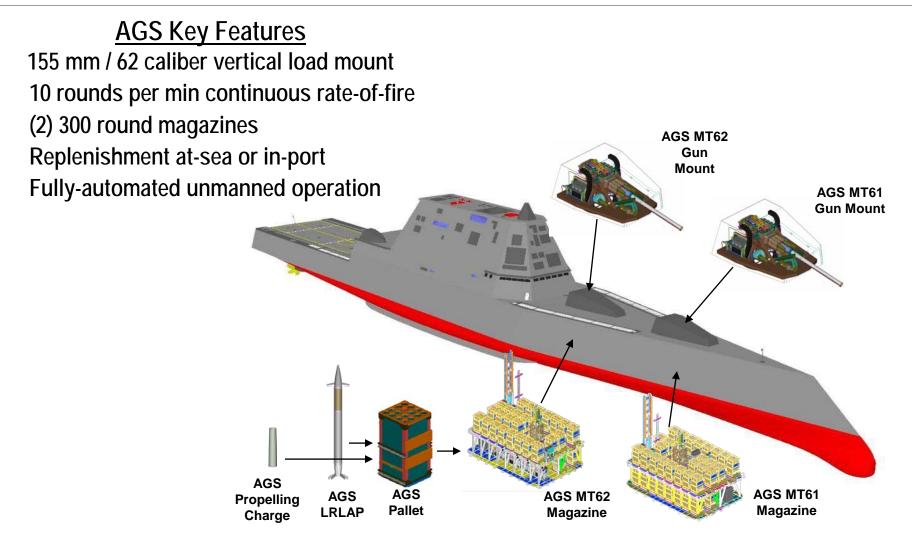
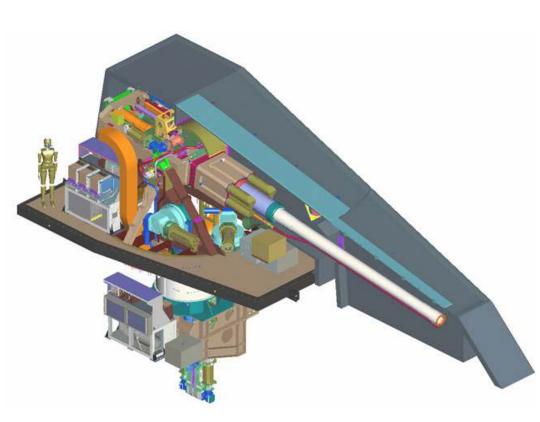


BAE Systems Land & Armaments


Model Based Software Development for DDG 1000 Advanced Gun System

Dirk Jungquist

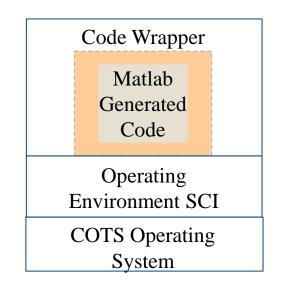
BAE SYSTEMS


Advanced Gun System on the Zumwalt DDG 1000

AGS Overview

- Advanced Gun System (AGS) is a 155 mm vertical load gun employing a fully automated magazine and gun loading system
 - 84 electric brushless DC drives
 - Largest motor 250 HP
 - 850 KW Peak power draw per gun mount
 - 4 VME Chassis with 15 Single Board Computers
 - 100 lb cased propellant
 - 220 lb, 14.5 cal (88") LRLAP

Application Trade Study


- Trade criteria of hand code versus model based design (Matlab/Simulink)
 - Cost / Risk / Performance
- Model Based Design Selected:
 - Control systems
 - Logic diagrams / state machines
 - Sensor filtering
 - Sequencing, BIT, fault handling
- Hand Code Selected:
 - Queuing problems
 - Linked lists
 - Database applications
 - Operating system interface
 - Hardware drivers

Co	sts
	Safety critical code compliance
	ODP process compliance
	Design
	Design Development Effort
	Design review / verification
	Requirements traceability
	Configuration management
	SW Test
	Unit level code & test
	SCI level test (host)
	Test vector development
	HW/SW Integraton
	Integration against emulated environment
	Integration test (HW/SW integration)
	Maintenance (LCC)
	Training / Tools (Resource availability)
Ris	ŝk
	Ability to meet schedule
	Ability to meet cost
	Technical performance (Design intent
	implementation (reqmts interpretation))
Pe	rformance (of end product)
	Reliability

Implementation Trade Studies

- Mix hand code and auto generated code?
 - Selected a separation where all the application functions on the processor are in the model
 - Simplified team organization and integration
- Interface directly to operating system?
 - Chose to use a OE layer which separates the application from the operating system
- Embed hand code into models?
 - Not required based on application requirements
 - Limit to interfaces
- Interface generated code only through a top level generated subroutine call?
 - Used direct OE calls through s-functions
 - Top level model called by frequency based scheduler

Processor Software Stack

Software Safety Implications

- The AGS is the first weapon system for which the U.S. Navy Weapon System Explosives Safety Review Board (WSESRB) Software Systems Safety Technical Review Panel (SSSTRP) gave concurrence for using a model based software development approach
 - Several possible approaches evaluated including certified code generators
 - To meet safety expectations a software safety process is required
- Qualification approach chosen with native Matlab code generator
 - Code generator treated like a new compiler
 - Limited set of base library blocks used
 - Usage enforced through automated script checking
 - Style guide checks also enforced through automatic scripts

Matlab Autocode Qualification Process Steps

1. Identify "Core" Building Blocks

 Only those building blocks necessary for AGS.

2. Unit Test

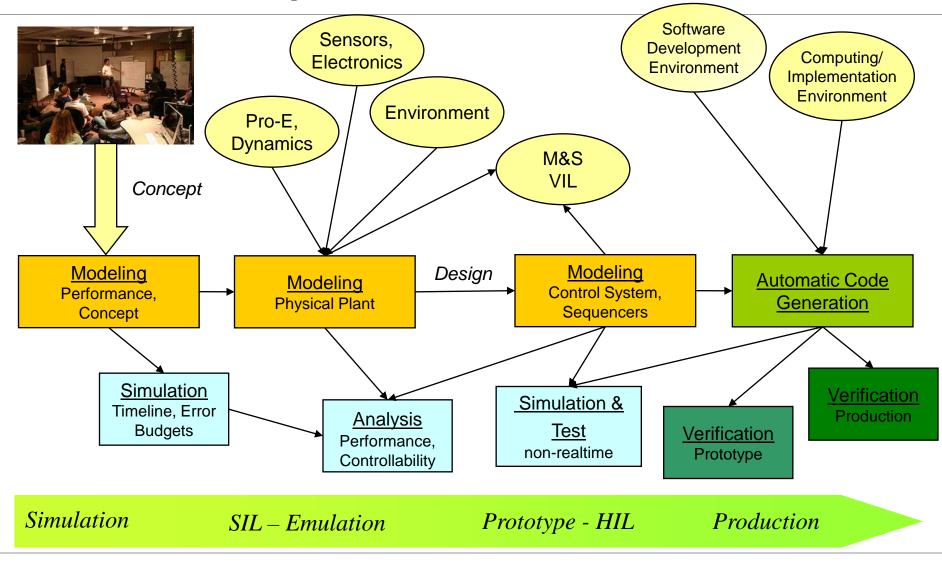
- Complete Model Coverage
 - No Dead Code
 - All Logic Tested

3. Peer Review

- Review "Core" Block Construction
 - Verify Safe Construction
 - Eliminate Unnecessary Blocks
- Confirm Coverage and Results

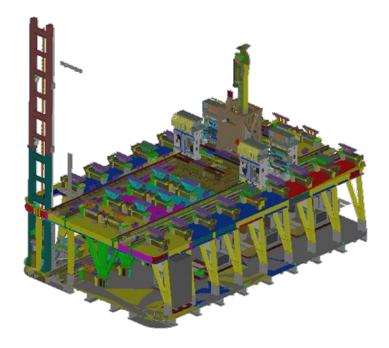
- 4. Code Generation Inspection
 - Code Generate Models and Test Vectors
 - Inspect Code
 - Tailored AGS Coding Standards
 - Verify Generated Code Correctness
 - No Dead Code Generated

5. Target Compile And Execute


- Compile Generated Code On Target
- Execute Test Results

6. Validate Test Results

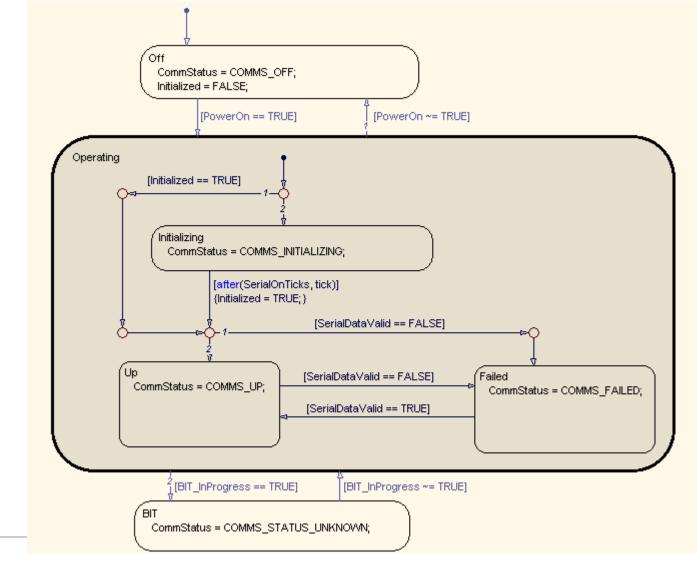
Validate results with those from graphical model-base testing.


BAE SYSTEMS

Product Development Flow

Development Artifacts

- Generic model library components
- Unit level tests
 - Model based with execution in simulation and on target processor
 - Coverage analysis
 - Peer review with SME
 - Automatic script checks for block usage and style guide
 - Code review if safety critical
- Independent test team
 - Integration functional testing against requirements
- Configuration management in Clearcase
 - Models, unit tests, coverage analysis


BAE SYSTEMS

Benefits of Model Based Design

- Subject matter expert direct implementation
 - Less detailed requirement decomposition
 - No algorithm translation issues
- Subject matter expert review of graphical logic
 - Design accessible by system, electrical and mechanical engineers
- Powerful automation tools available
 - Model style checking, unit test development, coverage analysis, regression testing and code generation
- Cost and schedule savings
 - Prototype applications five times less costly than traditional hand code
 - AGS objective production code actual costs were two times less than traditional hand code estimates
 - Improved performance expected as processes mature

Advantages of Graphical Logic

Challenges to a Model Based Design

- Estimating project cost
 - Functional based estimates
 - Calibrating SEER-SEM
 - Scaling for project size
- Reporting development progress
 - SLOC is meaningless metric
- Artifacts for independent test teams
 - Design can be performed with higher level requirements
 - Specific documents only for testing may be required

Contact Info

- Dirk Jungquist
- BAE Systems Land and Armaments
- 763-572-5312
- Dirk.Jungquist@baesystems.com