

2012 NDIA Joint Armaments Conference May 14-17, 2012

Qualifying Synthetically Manufactured Alternatives to Natural Materials Using the Calcium Silicide (CaSi₂) Project as an Example

Chris Sande Mechanical Design Engineer ATK Armament Systems (763) 744-5267 Christopher.Sande@atk.com Michael O'Grady Program Management Engineer U.S. Army RDECOM-ARDEC (973) 724-7065 Michael.Ogrady@us.army.mil Matthew Hafner Design Engineer ATK Small Caliber Systems (816) 796-7133 <u>Matthew.Hafner@atk.com</u>

Approved for Public Release, PAO 370-12, dated 17 April 2012 Distribution A: Approved for Public Release, Distribution Unlimited, 22 CFR 125.4(b)(13) applicable

Outline

- Background
- Qualification Process
- CaSi₂ Example
 - Background
 - Requirements
 - Iteration 1
 - Iteration 2
 - Lessons Learned
- Revised Qualification Process

Background

Issue: Current Government TDPs Call Out Natural Materials that:

- 1) Have Limited Specification Compliant Supplies
- 2) May Not Consistently Meet the Desired Mil-Spec Requirements
- 3) May Vary Within Large Lots of Material (Thousands of Pounds)

Desire: Identify Synthetically Manufactured Alternatives that:

- 1) Provide a Long-Term Source of Supply
- 2) Guarantee Mil-Spec Compliance (Chemical and Particle Size)
- 3) Results in a More Consistent Product (Lot-to-Lot and Within Each lot)

Challenges:

- 1) Identify Key Material Properties
- 2) Replicate Key Material Properties for the Same End Item Performance

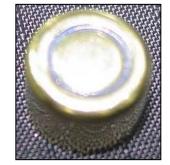
Need to Identify Synthetic Material Alternatives

Qualification Process

1) Identify Requirements

- Specification
- Manufacturing Process
- Final Product(s)
- 2) Identify Key Material/Manufacturing Process Characteristics
 - Chemical Composition
 - Particle Size Distribution
 - Material Treatments
- 3) Manufacture and Test Material
 - Design of Experiments

- 4) Analyze Manufacturing and Testing Results
- 5) Identify Additional Important Material/Manufacturing Process Characteristics
- 6) Repeat Steps 3 Through 5 as Necessary
- 7) Perform Qualification Testing
 - Material
 - Final Product(s)


Planning Saves Time and Money Down the Road

CaSi₂ Example – Background

Calcium Silicide (CaSi₂):

- Fuel for M52A3B1 20mm Primer
- Fuel for Alloy Manufacturing

- Mil-Spec Compliant Material is Almost Impossible to Locate
- Very Few Lots on the Market are Even Close to the Mil-Spec
- ATK Forced to Perform Special 'Out of Spec' Qualification Testing on Last 3 Production Lots

Alternate Calcium Silicide Source of Supply is Necessary

Specifications:

- MIL-C-324C: Calcium Silicide, Technical
 - Chemical Composition
 - o Min 60% Si
 - o Min 30% Ca
 - o Max 3.8% Fe
 - Particle Size Distribution
 - Retained on 150µm Sieve 1% Max
 - Retained on 106µm Sieve 1% Max
 - \circ Retained on 75µm Sieve 6 to 12%
 - \circ Retained on 45µm Sieve 25 to 50%
 - Passing 45µm Sieve 40 to 65%

Manufacturing Process:

- Lake City Primer Manufacturing
 - Minimal Tooling/Process Modification
 - Material Treatment Processes

Final Products:

- M52A3B1 Electric Primer
- 20mm Cartridges

Large Range of Chemical and Size Requirements

CaSi₂ Example – Iteration 1 Plan

Material:

 10 Different Rotary Atomized Synthetic Samples

- Varying Chemical Composition
 - o % Excess Si (silicon)
 - o % Free Fe (iron)
- Varying Particle Size Distribution
 - \circ Surface Area
- With and Without Weak Acid Treatment
 - o Lab Scale Method
- 3 Control Samples

Testing:

- Lake City Primer Manufacturing
 - Processability
- Primer Performance
 - Resistance
 - Pellet Weight
 - Primer Sensitivity
 - Primer Time
- Cartridge Performance
 - Pressure, Velocity, Action Time (PVAT)
 - Function & Casualty (F&C)
 - Environmental

Assembled a DOE to Identify the Key Properties

CaSi₂ Example – Iteration 1 Manufacturing & Testing

Manufacturing:

- 1 Lot of Primer Mix Was Manufactured from each Synthetic CaSi₂ Sample
- Charging Operators Rated each Sample During Production
 - Tendency to Cake
 - Primer Mix Stuck Together
 - Flow Characteristics
 - o Smearing

Control Sample

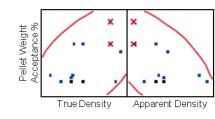
Representative Synthetic Samples

Testing:

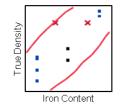
- Mix Impact and Friction Sensitivity
 - Within Normal Control Limits
- Primer Performance
 - Resistance
 - o Lower than Normal Production
 - 3 Samples Measured No Resistance
 - Pellet Weight
 - o All Samples Measured Heavy
- Cartridge Performance
 - Not Performed

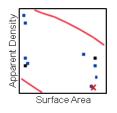
Initial Samples Would Not Work for Production

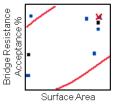
1) Samples Are Not Ideal for Production:


- Primer Mixes Appeared Wetter
- High Primer Pellet Weights
- Low Primer Resistance

2) Potential Causes


- More Spherical Particle Shapes
 - About Half the Particles Were Not Milled and Still Met the Particle Size Distribution Requirements
- More Fines
 - Full Scale Weak Acid Treatment May Wash Some Fine Particles Away


3) Instructed DOE Results:


• Improve Pellet Weight Acceptance

- High True Density
 - o High Iron Content
- Low Apparent Density
 - o High Surface Area
- Improve Resistance Acceptance
 - Increasing Surface Area
 - Jagged, Non-Spherical Particles

DOE Identified Modifications to Improve Manufacturability and Performance

CaSi₂ Example – Iteration 2 Plan

Material:

- 3 Different Rotary Atomized Synthetic Samples
 - Constant Chemical Composition
 - Varying Particle Size Distribution
 - o Larger Starting Particle Sizes
 - o Varying Milling Methods
 - With Weak Acid Treatment
 - \circ Production Method
- Primer were Manufactured from 1 Sample
 - Showed the Best Properties
 - o Densities
 - o Surface Area

Testing:

- Lake City Primer Manufacturing
 - Processability
- Primer Performance
 - Resistance
 - Pellet Weight
 - Primer Sensitivity
 - Primer Time
- Cartridge Performance
 - Pressure, Velocity, Action Time (PVAT)
 - Function & Casualty (F&C)
 - Environmental

Modified Synthetic Material to Improve Acceptance and Processability

CaSi₂ Example – Iteration 2 Manufacturing & Testing

Manufacturing:

- 1 Lot of Primer Mix Was Manufactured from the Synthetic CaSi₂ Sample
- Charging Operators Rated each Sample During Production
 - Tendency to Cake
 - \circ No Difference from Production
 - Flow Characteristics
 - o No Difference from Production

Testing:

- Primer Performance
 - Resistance
 - o Lower than Normal Production
 - Pellet Weight
 - o Measured Within Requirements
- Cartridge Performance
 - PVAT
 - o Within Specification
 - F&C
 - o Within Specification
 - Environmental
 - o Acceptable Results

Second Iteration Samples Improved, But Still Would Not Meet All Requirements

CaSi₂ Example – Iteration 2 Results & Future Plans **ATK**

Improved Pellet Weight Acceptance and Processability

Still Not Production Ready:

Low Resistance

Potential Causes:

• Eliminating the "Other" in the Chemical Composition

Future Plans:

- Increase the Resistance
 - Adding Impurities to Synthetic CaSi₂
 - Increase Oxygen Passivation Layer
- Perform a Full Material Qualification

Modifications to Increase Material Resistance are Possible

Identify and Understand Key Material Properties Up Front

- Chemical Composition
 - Spec Requirements
 - o Ca, Si, and Fe Contents
 - Important "Other" Materials
- Particle Size Distribution
 - Spec Required Size
 - o Size Within the Required Range
 - Particle Shape
 - o Spherical vs. Jagged

- Potential Material Changes During Product Manufacturing
 - In Process Material Treatments
 - o Weak Acid Treatment

Lessons Learned Can Save Money on Future Projects

Revised Qualification Process

1) Identify Requirements

- Specification
- Manufacturing Process
- Final Product(s)
- 2) Identify Key Material/Manufacturing Process Characteristics
 - Chemical Composition
 - Required Components
 - Potential Impurities/"Other" Components
 - Particle Size Distribution
 - Size
 - Shape
 - Material Treatments

- 3) Manufacture and Test Material
 - Minimize Deviations from Standard Production Equipment and Processes
 - Design of Experiments
- 4) Analyze Manufacturing and Testing Results
- 5) Identify Additional Important Material/Manufacturing Process Characteristics
- 6) Repeat Steps 3 Through 5 as Necessary
- 7) Perform Qualification Testing
 - Material
 - Final Product(s)

Finalized Qualification Process

Approved for Public Release, PAO 370-12, dated 17 April 2012 Distribution A: Approved for Public Release, Distribution Unlimited, 22 CFR 125.4(b)(13) applicable

1) Hafner, Matthew, Randall Busky, and Mark Mansfield. *Thermodynamic Testing Methods in Energetic Material Evaluation.* AIChE Meeting, 2008. Presentation.

Contact Information

Al Olson

- ATK Armament Systems Project Engineer
- (763) 744-5720
- <u>Allen.Olson@ATK.com</u>

Michael O'Grady

- ARDEC Program Management Engineer
- (973) 724-7065
- Michael.Ogrady@us.army.mil

Chris Sande

- ATK Armament Systems Mechanical Design Engineer
- (763) 744-5267
- <u>Christopher.Sande@ATK.com</u>

Matthew Hafner

- ATK Small Caliber Systems Design Engineer
- (816) 796-7133
- <u>Matthew.Hafner@ATK.com</u>

Dr. Paul Anderson

- ARDEC Chemist, Explosives Research and Development
- (973) 724-2982
- Paul.Erik.Anderson@us.army.mil