

An Engineering Approach to Precision Ammunition Development

Justin Pierce Design Engineer Government and International Contracts ATK Sporting Group

Federal Premium – extensive experience with precision ammunition

- Gold Medal competition: 5.56mm, .308 Win, .300WM, .338LM
- Government contracts: MK316, MK248, Gold Medal .223 Rem, Gold Medal .308 Win

What would happen if you could more accurately predict how well ammunition would perform at long ranges based on data gathered from short range testing?

- Long range testing is time consuming and often impractical
- Accurately characterizing ammunition variables with real data allows manufacturers and customers to predict how long range ammunition performs in all environments and under all situations
- Enhances requirement specifications and customer relations

Overview

Data sets currently being analyzed

- Field testing: Weapon, human and ammunition interactions
- Controlled testing: Ammunition interactions
- Multiple calibers
 - .338LM
 - 300WM

Presenting a subset of .338LM field and controlled testing

- Abundant, readily available data

Assumptions

Assumptions and hypothesis:

- 1. Increased velocity standard deviation will lead to increased vertical stringing
- 2. Computer modeling will closely match experimental results
- 3. Bullets will behave predictably throughout the flight path

Basic testing measurement procedures:

- 1. Ammunition will be characterized in controlled, lab conditions prior to field or range testing
- 2. Controlled testing to eliminate human variability
- 3. Field testing to include human variability
- 4. Handloaded and machine loaded ammunition will be tested
- 5. Minimize effects of wind drift variability by measuring vertical dispersion

Description:

- Three types of ammunition tested under 'Field' conditions (FMK1, FMK2, and FMK3)
- Three types of ammunition testing under 'Control' conditions (CMK1, CMK2, CMK3)
- Control MK3 is a ballistic match to Field MK3

Test environment

- Controlled environment:
 - Testing performed consecutively to minimize environmental inconsistency
 - 68-72 degree F, low-mid level humidity, known barometric pressure
 - Accuracy measured with Oehler Model 83 acoustic targeting system
 - SAAMI standard P&V testing procedures

Ammunition Type and	Average of	StdDev of	Average of	Average of	Average of	Average of FS	StdDev of FS	Average of %MOA
Group	VELOCITY	VELOCITY	MAX	MIN	VELOCITYES	GROUP	GROUP	GROUP
FMK1	2585	2	2597	2573	24	1.087	0.22	52%
Group 1	2582		2596	2574	22	1.240		59%
Group 2	2587		2604	2572	32	1.190		57%
Group 3	2584		2591	2573	18	0.830		40%
FMK2	2622	4	2633	2614	19	0.937	0.41	45%
Group 1	2624		2635	2617	18	0.980		47%
Group 2	2618		2629	2608	21	1.320		63%
Group 3	2625		2635	2618	17	0.510		24%
Grand Total .	2603	21	2615	2594	21	1.012	0.30	48%

Computer Modeling Overview

Commercially available ballistics software

- Point Mass Ballistics Solver 2.0
 - Inputs include:
 - » Caliber
 - » Weight
 - » Ballistics Coefficient
 - » Muzzle Velocity
- Standard ICAO atmospheric conditions
- Similar results to PRODAS

\$					- 🗆 🛛
Print					
APPLIED BALLISTICS	Point M	ass Ballist	ics Solver 2	• English • Metric	
Inputs					
Bullet		Atmosphere -		Sights	
Caliber	0.338 inches	Temperature	59 Fahrenheit	Sight Height 1.5 inches	
Weight	300 grains	Pressure	29.92 InHg	Zero Range 100 yards	
Use the	G7 💌 Standard	Humidity	0 %	Look angle 0 degrees	
G7 BC	0.381 lb/in^2	Air Density	0.07647 lb/ft^3		
G7 Form Factor	0.985	Wind speed	10 mph	Stability	
Muzzle Velocity	2585 fps	Wind Direction	3 O'clock	Twist Rate 13 in/turn	
				Bullet Length 1.2 inches	
Output Optio	ns			5G 3.18	
Max Range 11	100 yards Ste	Calculate Spin Drift 🖌			

			Calculate		
Range	Velocity	Energy	Trajectory	TOF	Drift
(yards)	(fps)	(ft-lb)	(inches)	(sec)	(inches)
0	2585	4451	-1.50	0.0000	0.00
25	2555	4350	-0.62	0.0292	-0.02
50	2526	4250	-0.07	0.0587	-0.09
75	2497	4152	0.14	0.0886	-0.21
100	2468	4057	-0.00	0.1188	-0.37
125	2439	3962	-0.50	0.1493	-0.59
150	2410	3870	-1.36	0.1803	-0.86
175	2382	3779	-2.59	0.2116	-1.18
200	2354	3690	-4.21	0.2432	-1.56
225	2326	3603	-6.22	0.2753	-1.99
250	2298	3517	-8.63	0.3077	-2.47
275	2270	3433	-11.45	0.3406	-3.02

Ballistics:

- G7 BC: 0.381; average velocity: 2585 fps
- Muzzle Velocity 1: 2555 fps (-30fps)
- Muzzle Velocity 2: 2615 fps (+30fps)

Atmospherics:

- Temperature: 59 degree F
- Pressure: 29.92 inHg
- Density: 0.07647 lb/ft^3

Predicted bullet drop (1,000yds):

- Velocity 1: -339.92 in
- Velocity 2: -322.31 in
- Delta: 17.49 in

Significant difference between low velocity rounds and high velocity rounds

- Modeling indicates well over 1 MOA difference is possible just from velocity variation
 - Field MK1: 17.5 inches = 167% MOA
 - Field MK2: 16.7 inches = 160% MOA
 - Field MK3: 16.3 inches = 156% MOA

Computer modeling repeated with control ammunition - significant difference between low velocity rounds and high velocity rounds remains

- Well over 1 MOA difference is possible just from velocity variation
 - 27" Barrel (BBL5)
 - » Control MK1: 12.92 inches = 123% MOA
 - » Control MK2: 16.7 inches = 160% MOA
 - » Control MK3: 16.3 inches = 156% MOA
 - 24" Barrel (BBL6)
 - » Control MK1: 15.37 inches = 147% MOA
 - » Control MK2: 15.86 inches = 152% MOA
 - » Control MK3: 16.09 inches = 154% MOA

Most obvious expected interaction:

- 'Y' impact vs. velocity
 - Direct correlation between vertical ('Y') impact and velocity
 - Velocity increase leads to high vertical ('Y') impact

Other interactions explored but not presented:

- 'Y' impact vs. shooter
- 'Y' impact vs. time of day
- Group size vs. barrel length
- Group size vs. time of day
- Etc.

- Includes human error
 - Multiple experienced shooters
- Different variants of ammunition ammunition optimized for rifle system; same ammunition used for computer modeling
 - Gathered target velocity
- Multiple rifles
 - Various manufacturers
 - Same make and model, nearly consecutive serial numbers
- 1,000 yard testing
 - Exact environmental data unavailable
 - » Field MK1 and MK2 Overcast, light snow, constant 3-5 mph wind, 29-31 degree F
 - » Field MK3 Clear, 4-10 mph wind, 34-35 degree F

ATK-

*Barrels plotted separately do not exhibit significantly different results

FMK2: 'Y' Impact (in) vs. Impact Velocity (fps)

*Barrels plotted separately do not exhibit significantly different results

FMK3: 'Y' Impact (in) vs. Impact Velocity (fps)

*Barrels plotted separately do not exhibit significantly different results

Control Testing Overview

ATK,

- Eliminates human error
 - Machine style rest
 - Fixed barrel: Two clamping points
- Three types of ammunition
 - Control MK1, 2, 3 (CMK1, CMK2, CMK3)
 - Muzzle velocity at 10 feet
- Multiple barrels
 - New accuracy barrels
 - Same make, consecutive serial numbers
- 1,000 meter testing
 - Exact environmental data collected
 - » BBL 5 (27" Barrel) 89.06 degree F, 39.52% RH, 28.96 BP, 0-3 mph wind
 - » BBL 6 (24" Barrel) 82.76 degree F, 57.3% RH, 28.85 BP, 0-3 mph wind

BBL5 - 27" Barrel: 'Y' Impact (in) vs. Muzzle Velocity (fps)

*Muzzle velocity taken at 10 feet from muzzle

BBL6 - 24" Barrel: 'Y' Impact (in) vs. Muzzle Velocity (fps)

*Muzzle velocity taken at 10 feet from muzzle

Results:

- 1. No appreciable change in 'Y' axis impact at velocity extremes for field ammunition
- 2. Controlled data more closely matches predicted data with some unexplained anomalies
- 3. No appreciable difference in shooter interactions

Preliminary conclusions:

- 1. Velocity variation may be less important than weapons interactions in real world situations
- 2. Computer modeling may not accurately predict real world usage
- 3. Total systems approach to ammunition and weapons system design will enhance warfighter capabilities

Future testing:

- 1. Continue to incorporate data throughout testing cycles to confirm or invalidate conclusions
- 2. Characterize launch dynamics
 - System jump analysis, including muzzle pointing vector in relation to muzzle velocity

What are your questions?