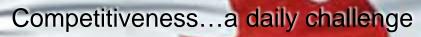
Development of a 12.7 mm Limited Range Training Ammunition (LRTA)

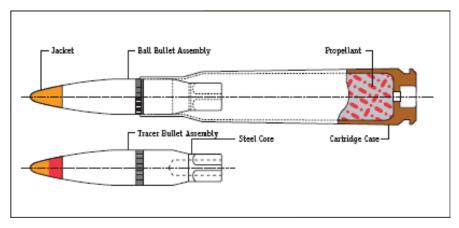
Gabriel Bourque May 16th, 2012

GENERAL DYNAMICS


Ordnance and Tactical Systems-Canada

Outline

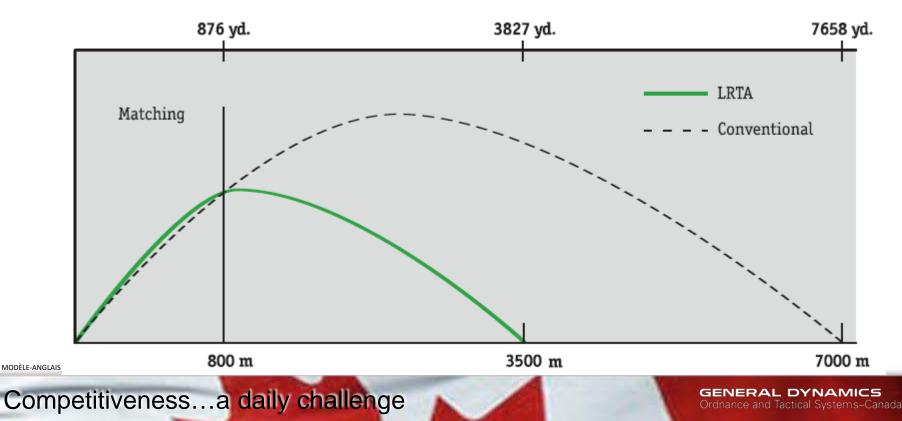
- Background
- Objective
- Design Methodology
- Results



MODÈLE-ANGLAIS_2012.PPTX

Background

- Limited Range Training Ammunition (LRTA) in production at GD-OTS Canada since 2001
- Projectile with rearward fins, spin decelerates in a controlled manner to render it unstable past its effective training range

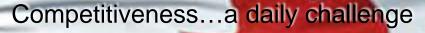


Current LRTA has 50% less maximum range than conventional 12.7 mm (.50 caliber) ball projectiles: 3500 m vs. ~7000 m

• Cartridge available in ball and tracer versions

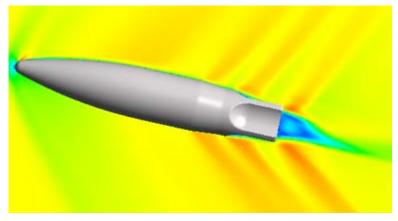
Current LRTA Performance Characteristics

- Maximum range: 3500 meters
- Precision (ball): 30 cm hor. & vert. std deviation at 550 m
- Precision (tracer): 40 cm hor. & vert. std deviation at 550 m
- Ballistic match at 550 & 800 m: \leq 1 mil

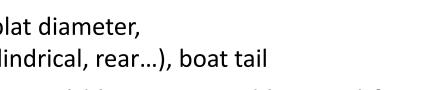


Objective

- Develop Next Generation of LRTA cartridge
- Reduce 3,500 m maximum range of current LRTA cartridge under 2000 m
- Maintain precision and ballistic match performance similar to the service round (and current LRTA round), up to 800 meters



MODÈLE-ANGLAIS_2012.PPTX


Design Methodology

- Investigation of all design parameters which could affect the flight dynamics of the projectile
- Incorporated a LDFSS methodology in order to facilitate the development
 - Use of a DFMEA to identify critical design parameters
 - DOEs used in order to maximize information results obtained during testing
- Design focused on maximum range
- Need to conserve same performances in precision and ballistic match

DFMEA

- DFMEA conducted solely on the projectile
- Identification of important design parameters could be regrouped in two distinct categories:
 - Rear fins design:
 - Length, depth, radius, shape, number
 - Projectile shape:
 - Nose radius, meplat diameter, lengths (nose, cylindrical, rear...), boat tail
- Ballistic match results could be impacted by modifications to projectile shape
 - First objective was to see the effect on maximum range

DFMEA

- Also investigated what other parameters could affect flight characteristics
 - Muzzle velocity
 - Yaw at muzzle
 - Cartridge length
 - Projectile weight
 - Position of center of mass
 - Conditioning temperature
 - Gun elevation
 - Etc.

Design of Experiment

- Design parameters too numerous to test all possible combinations
- Use of DOEs for testing

Competitiveness...a daily challenge

- Reduction in number of possible combinations of parameters
- Tests conducted concurrently on 2 fronts
 - Different fins configurations, with same projectile shape
 - Different projectiles shapes, with same rear fins
- Eventually, combination of the most promising results from both groups

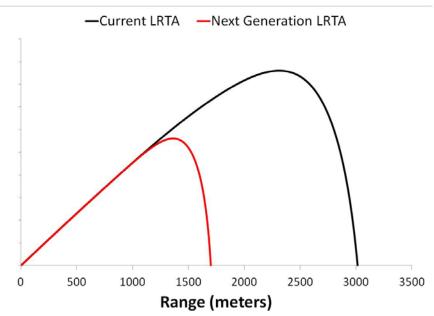
Design of Experiment

- Fins Configuration
 - Kept the same jacket for all projectiles
 - Similar to current LRTA & C162 rounds
 - Machining of different fins on "blank" steel cores

Projectile Shape

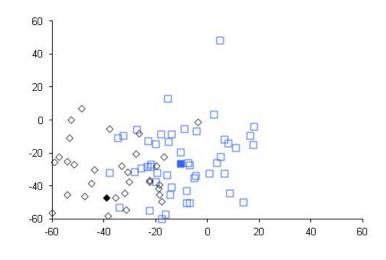
- Different approach needed to modify projectile shape
 - Too costly and time consuming to modify fabrication matrices and punches just for prototypes
- Machining of monolithic projectiles on a CNC to reproduce desired shapes

Use of Monolithic Projectiles


• Tested different materials for our needs

- More control over tolerances versus jacketed projectiles
- Different physical properties than jacketed projectiles
 - Results provide information on variation of different parameters
 - Results cannot be directly transposed to jacketed projectiles

Experimental Results


- Recently tested design configurations which show significant prowess to constantly fall at ranges under 2000 m
- Fired in maximum range on 2 different occasions, each time in 2 different guns
 - Same results obtained on both occasions
- Velocity drop consistent with current LRTA at distances up to ~900 m from muzzle
 - Similar precision / ballistic match results could be expected

Next Steps

- Validate maximum range results obtained
 - Testing, testing, and more testing
 - Even just one projectile with a longer range is one too many
- Need to confirm robustness of design in order to validate the limits of the design tolerances
- Validation of results in precision / ballistic match
- Industrialization process

MODÈLE-ANGLAIS_2012.PPTX

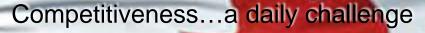
Conclusion

- Current LRTA
 - Maximum range of 3500 m
 - Match with C162 round at 800 m
- LDFSS methodology used to design Next Generation LRTA
 - Maximum range of 2000 m

Competitiveness...a daily challenge

- Same performance in precision / ballistic match
- Designs already tested which could meet requirements
- Additional efforts needed to confirm results & validate robustness of design under all operating conditions

Contact Information


Gabriel Bourque

Project Engineer, Small & Medium Caliber Ammunition

Phone: 450-581-3080 ext. 8501

E-mail: gabriel.bourque@can.gd-ots.com

MODÈLE-ANGLAIS_2012.PPTX

