



#### **TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.** Analysis of Fatigue Life Estimate for the M119 Cradle Assembly with a Gouge Cut Defect

Caitlin Weaver, Robert K. Terhune, Brian Peterson

AMSRD-AAR-MEF-E, Building 94, 2nd floor Fuze and Precision Armaments Directorate AETC, U.S. Army ARDEC, Picatinny Arsenal, NJ 07806-5000 phone: 973-724-6349, fax: 973-724-2417, <u>caitlin.m.weaver@us.army.mil</u>

2012 NDIA Joint Armaments Conference, Seattle, WA May 14-17, 2012



# Outline



- I. Background
- II. Method Abaqus
  - Geometry, Part Instances, BC, Materials, and Loads
  - Pre-cracked Models
  - Applied Loads
- III. Method Fe-Safe
  - Material Property and Load Data
  - Analysis Summary
- IV. Method NASGRO
  - Geometry, Material Property and Normalized Stress Data
  - Loads
  - Schedule Cycle
- V. Results
  - XFEM
  - Maximum Stress and Plastic Strain
  - Fe-Safe
  - NASGRO
- VI. Conclusions/Further Work
- VII. Questions



# I. Background





- During the manufacturing process in 2011, 46 M119A2 systems were manufactured with a tooling groove defect in the 12593242 Cradle.
- The worst case tooling groove was 0.071-in deep and 2.300-in long, spanning the full length of the channel.

#### • <u>Goals:</u>

- Run a fatigue and critical crack analysis on the modeled portion of the plate that has the tooling defect (gouge).
- Determine if cradle will survive for 1100 cycles (per reliability requirement MIL-DTL-32191).
- Determine if further analysis is needed.

#### • <u>Scope:</u>

- The primary concern of the analysis effort is to analyze M119 cradle components specifically the firing mechanism plate of the cradle channel.
- The model is loaded by pressure data calculated from strain gauge data that was recorded during live fire testing.

Distribution Statement A: Approved for Public Release; distribution unlimited



#### I. Background (cont.)



\*\*\*Note: Cradle critical components labeled, individual parts not specified below





#### II.a. Method - Abaqus: Geometry, Part instances, BC, Materials and Loads



- Analysis was performed using Abaqus 6.11
  - Analyses types: Dynamic implicit (XFEM) and explicit, non-linear materials, non-linear geometry
  - All models were meshed with 8-node hexahedral elements (C3D8R).
- To simulate the fixed position of the channel on the cradle:
  - the bottom face of the plate in the x-z plane was constrained in all directions and rotations using an Encastre boundary condition.
  - the top face in the x-z plane was constrained directionally and rotationally in the z-direction.
- Load:
  - the top face in the x-z plane was partitioned evenly into three equal parts.
  - the pressure load from the recorded test data was applied to the corresponding left, middle and right part of the top face of the x-z plane.
- Material used: 95-15 Stainless Steel.
  - Material property data was obtained from in house testing.



# **RDECOM** II.b. Method – Abaqus: Pre-Cracked Simulations



- To insert a crack into the model:
  - Create a planar shell with dimensions needed for desired crack size (Part Module).
  - Translate the crack instance to desired location, making sure that it doesn't correspond to an element edge.



Example of a Crack in Finite Element Mesh

- Two pre-cracked models were used for XFEM simulation:
  - Case (1): a crack 0.015 x 0.011 inch horizontally along the gouge cut.
  - Case (2): a crack 0.015 x 0.011 inch vertically along the gouge cut.
- These pre-cracked models were done based off the results of a florescent penetrant test performed at YPG on 11 June 2011 that showed the presence of a 0.015 inch crack in the tooling defect area.



# II.c. Method - Abaqus: Load Data

**Applied Pressure Data** 



Distribution Statement A: Approved for Public Release; distribution unlimited

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

P3 - Right

# **RDECOM** III.a. Method – Fe-Safe: Material Property and Load Data



- Analysis was performed using Fe-Safe version 6.2
  - Analysis type: imported dynamic explicit Abaqus analysis
- Material Used: SAE 4140
  - Ultimate tensile strength: 156,060 psi (very similar to 95-15 SS)
- Load Settings:
  - Step 1 at time = 0.2s, peak stress = 154,719, load scale: 0, 1;
     repeats = 5 (to simulate the reverbating from gun launch)



# III.b. Method – Fe-Safe: Analysis Summary



| 슨 FEA Fatigue Analysis S | ummary                                                                                                               |
|--------------------------|----------------------------------------------------------------------------------------------------------------------|
| Algorithm                | BrownMiller:-Morrow                                                                                                  |
| Material                 | SAE-4140-system.dbase                                                                                                |
| Surface                  | 75 um < Ra-default.kt                                                                                                |
| Kt                       | 2.45                                                                                                                 |
| UTS                      | 156.055 ksi                                                                                                          |
| Subgroup                 | Surface                                                                                                              |
| Knock-Down               | Off                                                                                                                  |
| Model File (s)           | C:\Abqwork\M119_fs_cmw_13feb12_2fesafe.odb                                                                           |
| FEA Units                | S=psi                                                                                                                |
| Loading                  | Loading is equivalent to 1 Repeats                                                                                   |
|                          | Load Definition File : current.ldf                                                                                   |
|                          | Elastic FEA                                                                                                          |
| Scale factor             | 1                                                                                                                    |
| Overflow Life value      | 0                                                                                                                    |
| Infinite Life value      | Material CAEL                                                                                                        |
| Temperature analysis     | Enabled if temperatures present                                                                                      |
| Histories                | None                                                                                                                 |
| Log                      | None                                                                                                                 |
| List of Items            | None                                                                                                                 |
| Histories for Items      | None                                                                                                                 |
| Log for Items            | None                                                                                                                 |
| Output contours to       | C:\Users\caitlin.m.weaver\Documents\fe-safe.version.6.2\projects\project_01\jobs\job_01\fe-results\M119_fs_cmw_13feb |
| Contour variables        | LOGLife-Repeats, SMAX/Vield, SMAX/UTS                                                                                |
| Intermediate             | C:\Users\caitlin.m.weaver\Documents\fe-safe.version.6.2\projects\project_01\jobs\job_01\fe-results\fesafe.fer        |
| Influence coeffs.        | Disabled                                                                                                             |
| Gauges.                  | Disabled                                                                                                             |
| Solvers                  | Embedded Solver                                                                                                      |
| •                        |                                                                                                                      |
|                          | Continue Cancel                                                                                                      |



#### IV.a. Method – NASGRO: Geometry, Material Property, and Normalized Stress Data







| Thickness, t         | 0.08      |
|----------------------|-----------|
| Width, W             | 2.35      |
| Crack ctr offset, B  | 1.175     |
| Initial flaw size, a | 0.0375291 |
| Initial a/c          | 0.375291  |

Distribution Statement A: Approved for Public Release; distribution unlimited

- Analysis was performed using NASGRO version 5.0
- Model used was surface crack plate specimen (SC17) with the same dimensions as the plate measured in Abaqus
  - Model was chosen after consultation with J. Cardinal (staff engineer at SwRI)
- Materials: 95-15 Stainless Steel (from in-house testing) and 15-5PH H1025 Stainless Steel (defined in NASGRO)

| Normalized X | Normalized S0 | Stress from<br>Abaqus ODB |
|--------------|---------------|---------------------------|
| 0            | 1             | 154808                    |
| 0.1          | 0.989083252   | 153118                    |
| 0.2          | 0.967068885   | 149710                    |
| 0.3          | 0.823122836   | 127426                    |
| 0.4          | 0.577328045   | 89375                     |
| 0.5          | 0.380914423   | 58968.6                   |
| 0.6          | 0.221089349   | 34226.4                   |
| 0.7          | 0.105762622   | 16372.9                   |
| 0.8          | 0.142635394   | 22081.1                   |
| 0.9          | 0.322923234   | 49991.1                   |
| 1            | 0.427379722   | 66161.8                   |

# RDECOM IV.b. Method - NASGRO: Loads

| 🕂 Geometry 📄 🕂 Geom Tables 🗎 📈 🛚 M                                                                                                                                                  | laterial              | 🔼 Los                        | d Blocks                     | BuildSch                  | edule 🗎 🎦 C     | utputOptions  | 😴 Computa | tions |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|------------------------------|---------------------------|-----------------|---------------|-----------|-------|
| Show list of frequently-used schedules Add schedule to frequently-used list Visualize current block (1 of 1)                                                                        |                       |                              |                              |                           |                 | lock (1 of 1) |           |       |
| Right-click to set number of distinct blocks<br>Left-click to select which block to edit/display                                                                                    | Block Ca<br>Enter the | ase Definitio<br>number of ( | n: block 1 o<br>cycles and v | f 1<br>alues for all stre | ess quantities: | 1             | 1         | 1.    |
| 1 2 3 4 5 6 7 8 9 <b>↓</b>                                                                                                                                                          | Step 1                | Keac chk /                   | Lycies<br>1                  | 1                         | 0 SU at t2      |               |           | â     |
| For this block                                                                                                                                                                      | 2                     |                              |                              |                           |                 |               |           |       |
| Input cycles and stresses manually     Select file(e) containing long block(e)                                                                                                      | 4                     |                              |                              |                           |                 |               |           |       |
| C Generate standard long block                                                                                                                                                      | 6                     |                              |                              |                           |                 |               |           | -     |
| ○ Generate acceptance vibration block       III       III         Stress scale factor on stress quantity       S0 154.808         Set all blocks' scale factors to those of block 1 |                       |                              |                              |                           |                 |               |           |       |
| Check throughout this block for crack instability at limit stress?  Check if Kmax>Keac for this block? Keac                                                                         |                       |                              |                              |                           |                 |               |           |       |
| Image: Bypass all net-section stress checks?         Image: Blocks represent flights         Blocks represent flight hours                                                          |                       |                              |                              |                           |                 |               |           |       |

 Screen shot of load blocks used for analysis; S0 = 154,808 psi corresponds to the value from the Abaqus analysis; load corresponds to 1 cycle.

Distribution Statement A: Approved for Public Release; distribution unlimited

# RDECOM IV.c. Method – NASGRO: Cycle Schedule

| <b>⊕</b> ' | Geometry 🕴 🕂                                | Geom Tables 🛛 🛃      | Mater | ial 🛛 🕅 Load        | Blocks MBui       | ildSchedule               | OutputOptions                   |  |  |  |
|------------|---------------------------------------------|----------------------|-------|---------------------|-------------------|---------------------------|---------------------------------|--|--|--|
| Ass        | Assemble Schedule from Distinct Block Cases |                      |       |                     |                   |                           |                                 |  |  |  |
| Sum        | mary of distinct block                      | s already defined:   |       | Distinct block case | repetition table: | Schedule title [optional] |                                 |  |  |  |
|            | Block type                                  | Details              | *     | Block case          | Times to apply    | *                         |                                 |  |  |  |
| 1          | Manual                                      | no details available | =     | 1                   | 1                 | = #o                      | f times to repeat schedule 1000 |  |  |  |
| 2          |                                             |                      |       |                     |                   |                           |                                 |  |  |  |
| 3          |                                             |                      | 1     |                     |                   |                           |                                 |  |  |  |
| 4          |                                             |                      | 1     |                     |                   |                           |                                 |  |  |  |
| 5          |                                             |                      | 1     |                     |                   |                           |                                 |  |  |  |
| 6          |                                             |                      | 1     |                     |                   |                           |                                 |  |  |  |
| 7          |                                             |                      | 1     |                     |                   |                           |                                 |  |  |  |
| 8          |                                             |                      | 1     |                     |                   |                           |                                 |  |  |  |
| 9          |                                             |                      | -     |                     |                   | Ŧ                         |                                 |  |  |  |
| •          |                                             | Þ                    |       | ٠ I                 | ۰ (               | 1                         |                                 |  |  |  |

Screen shot of build schedule; each load block is applied 1 time for 1000 cycles.

Distribution Statement A: Approved for Public Release; distribution unlimited



### V.a. Results - XFEM





- The crack grows along the x-direction and varies between one and three elements through the thickness of the y-z plane.
- Value of 0.4 shows partial or surface cracking, not a complete through crack.

# **RDECOM** V.b. Results – XFEM pre-crack (X-axis)



Crack at t=0s

Crack at t=1s

- The crack grows along the x- and z- direction.
- Crack propagation is similar to the crack initiation case.
- Crack is partial or surface cracking, not a complete through crack (based on the color values).

# **RDECOM** V.C. Results – XFEM pre-crack (Y-axis)



Crack at t=0s



- The crack grows along the x- and z- direction; no crack growth in the y-direction.
- Crack propagation is not similar to the crack initiation case.
- Crack is partial or surface cracking, not a complete through crack (based on the color values).

Distribution Statement A: Approved for Public Release; distribution unlimited

## V.d. Results – Maximum Stress and Plastic Strain





- Crack initiation occurs at a Von Mises stress of 144,562 psi, which is slightly lower than the yield stress of the material
  - As the crack continues to propagate yield stress is reached
- Plastic strain was not exceeded

RDECOM



# V.e. Results - fe-safe





• Analysis shows a life cycle of 1071

Distribution Statement A: Approved for Public Release; distribution unlimited



# V.f. Results - NASGRO



- Results show that crack
   becomes unstable after 106
   cycles
  - Crack grows to 0.072-in before failure, which is almost the thickness of the part.
    - Part thickness is 0.080-in

| Save+Run Stop                                                             | Crack outside solution bounds: a/t = 0.9015 Valid Range 0                                                       | to 0.9 |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------|
| Select details to show:                                                   |                                                                                                                 |        |
| Input: Geometry<br>Input: Material<br>Input: Spectrum<br>Sched/blk/step # | at the very beginning<br>of Load Step No. 1<br>of Block No. 1<br>of Schedule No. 107                            |        |
| Flights or flt hrs<br>Crack size                                          | Crack Sizes: a = 0.721207E-01 , c = 0.159205 , a/c =<br>Total Cycles = 106.00000<br># Total Flights = 106.00000 | 0.4530 |
| Select details to plot:                                                   |                                                                                                                 |        |
| Crack size                                                                |                                                                                                                 |        |
| Max K                                                                     | General spectrum diagnostics                                                                                    |        |
| Beta factor, F                                                            |                                                                                                                 |        |
| Net stress fctr, G                                                        |                                                                                                                 |        |
| Residual strength                                                         |                                                                                                                 | =      |
| da/dN                                                                     | Execution time (nn:mm:ss): 00:00:03.5                                                                           |        |
| DKth                                                                      | Note: this is elapsed wall-clock time, not CPU time!                                                            |        |
| Plot v. N v. a v. fits                                                    |                                                                                                                 | -      |
|                                                                           |                                                                                                                 | •      |
| ALL calc'd data to csv file                                               | Print window Close window Save window contents to doc file                                                      |        |

Computed output for "nasfla\_M119.in"



Distribution Statement A: Approved for Public Release; distribution unlimited





#### **Conclusions:**

- Results from all three methods show that the plate specimen fails the reliability requirement of 1100 mean rounds.
- The plate specimen was not able to prove that the channels with the tooling defects would survive the required amount of firings/cycles.

#### Path Forward (suggested):

• Since the plate specimen was not able to prove survivability, a more accurate FEA model needs to be analyzed in Abaqus and fe-safe to determine of the firing mechanism plate/channel would survive in the cradle assembly.



Questions





Distribution Statement A: Approved for Public Release; distribution unlimited