

Design Study for a Combined Lethal and Non-Lethal Munition

NDIA Joint Armaments Conference 16 May 2012

Paul A. Shipley

1±X11RON Systems

Brandon S. Recchia

AAI Corporation Hunt Valley, MD

Acknowledgements

- National Small Arms Center
- ARDEC/JSSAP
- Joint Nonlethal Weapons Directorate
- ATK Small Caliber Systems
- D.E. Trump, LLC
- Work performed under contract NBCH3090001-0002

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the U.S. Government.

1±X11RON Systems

Program Overview

- Objective
 - Increase warfighter capability by providing one cartridge delivering variable effects from non-lethal to lethal at greater non-lethal range than currently available
- Contract
 - NBCH3090001-0002
 - Phase I Design Study
 - Phase II Component/Subsystem Demonstrations
- Quantitative Metrics

Measure	Current	Threshold	Objective	TRL
Combined Lethal & Non-	Nono	Non-Lethal to	Optimizo on Torgot	Start 2
Lethal Warhead	none	Lethal	Optimize on Target	End 4

Current Non-lethal/Less-than-Lethal Launchers & Cartridges

12 Gauge Shotgun

XM 1012 and XM 1013

37mm Flare Gun/40mm Grenade Launcher

EXact iMpad D

AAI Law Enforcement Products

(Legacy Product Line)

40 MM CS FERRET

12 GA SS-100 (SOFT SLUG)

FN 303 (.68 caliber)

Permanent Paint Rear payload: Latex-based vellow polymeric paint. Product #: 48552

OC (Oleoresin Capsicum) Rear payload: Orange dyed non-toxic glycol base + 10% OC (pepper) concentrate at 2 million S.H.U. Product #: 48553

Clear Impact Rear payload: 100% non-toxic glycol base. Product #: 48554

Washable Paint Rear payload: Fluorescent pink pigment in non-toxic glycol base. Product #: 458555

M1006

Requirements Analysis Key Design Parameters (1 of 2)

- 1. Lethal vs non-lethal impact demarcation
 - Trauma metrics evaluated for applicability
 - Viscous Criterion (VCmax) No contact area factor
 - Blunt Criterion (BC) Impact location specific
 - Maximum Force- Good predictor for head injuries
 - Energy Density
 - Best predictor for skin penetration and internal injuries
 - Accounts for impact area better than other criteria
 - Selected as evaluation criteria
 - Energy density approximate transition zone
 - Lethal > 52 $lbm \cdot ft^2/s^2/in^2 \ge Non-lethal$
 - Sufficiently accurate for preliminary design studies
 - Further distinctions possible but outside scope of effort

Requirements Analysis Key Design Parameters (2 of 2)

- 2. Effective range \geq 100m
- 3. Mode setting
 - Factory setting- non-lethal
 - Ability to revert mode settings
 - No projectile component removal or addition to change mode
- 4. Must be fired from standard 12 ga / 40mm weapons (no modifications)

Methodology for Concept Development

- Develop 3D-CAD Designs
 - Solid models were developed- inertial characteristics
- Establish Internal Ballistics
 - PRODAS analysis to establish propellant load/Pch/Vm
- Evaluate External Ballistics Characteristics
 - PRODAS analysis to determine stability and drag of the fin and spin stabilized projectiles
- Evaluate Terminal Ballistic Effects
 - Energy Density was used to estimate lethality
- Evaluation vs. key requirements
 - All concepts developed were compared based on key requirements

Concept Design Summary

Description	Variable Mass	Variable Velocity	Variable Impact Area
C1- Chemical Hardening			\checkmark
M1- Nested Dual Projectiles	\checkmark		\checkmark
M2- Frangible Body			\checkmark
M3- Liquid Expulsion	\checkmark		
M4- Subcaliber Dual Projectiles	\checkmark	\checkmark	\checkmark
M5- Tandem Dual Projectiles	\checkmark		

1±X11RON Systems

Design Concept C1 **Chemical Hardening**

• 12ga • Fin-Stabilized Variable Proj Mass Variable Proj Velocity Variable Impact Area

vstems

 \checkmark

Projectile Nose Contains Two Liquid Chemical Chambers

Non-lethal mode

- Factory setting
- Liquids separated Lethal mode

- Operator setting
- Rotation of cartridge mixes liquids
- Reaction initiates rapid hardening

©2012 AAI Corporation All rights reserved

Design Concept C1 Impact Mode Characteristics

Non-lethal Impact (default) - Liquid reactants disperse on impact, reducing energy density

Lethal Impact Pre-fire chemical reaction hardens nose, forms slug type projectile

EXCIRON System

©2012 AAI Corporation All rights reserved

Design Concept C1 Evaluation of Candidate Chemicals

- Chemical Classes Evaluated
 - Ероху
 - Polyurethane
 - Polyamide
 - Polyester
 - Acrylate
- Variety of curatives and catalysts evaluated

- Primary Evaluations
 - Mixing Potential
 - Cure Time
 - Temperature Effects
 - Human Hazard (toxicity)
- Secondary Evaluations
 - Long term Storage Requirements
 - Compatibility with Projectile Material
 - Environmental Hazard

Evaluation of Design Concept C1 Chemical Hardening

	L-NL		Terminal - No	Lethal		
Stabilization	Trajectory	Trajectory Muzzle Muzzle Energy		Max	Energy Density	
Method	Match	Velocity	Density	Range	@ 100m	
Fin	Yes	300 ft/s	<52 ft-lbs/in ²	120 m	60 ft-lbs/in ²	

Advantages

- Identical propulsion
- Identical trajectories
- Mixing will change nose color to indicate setting
- Potential for additives to enhance non-lethal effects
 - Rubber balls for blunt trauma
 - Paint for marking
 - CS or Pepper
- Demonstrated successful rapid hardening reaction times (≤ 5 sec)

Disadvantages

- Lethal setting not reversible
- Human hazards from liquids
 - Non-lethal mode
 - Dispersal of chemicals on impact
 - Potential toxicity/injury

Design Concept M1 Impact Mode Characteristics

THE KURON Systems

Lethal Impact

NL Shell stops on impact but penetrator continues with Lethal effects

Penetrator released on impact

Evaluation of Design Concept M1 Nested Dual Projectile

	L-NL		Terminal - No	Lethal		
Stabilization	Trajectory Muzzle		Muzzle Energy	Max	Energy Density	
Method	Match	Velocity	Density	Range	@ 100m	
Fin	Yes	220 ft/s	<52 ft-lbs/in ²	120 m	95 ft-lbs/in ²	

Advantages

- Identical propulsion
- Identical trajectories
- Settings reversible

Disadvantages

 Low velocity of lethal projectile

EXTRON Systems

Design Concept M2 Frangible Projectile

Variable Proj Mass	
Variable Proj Velocity	
Variable Impact Area	

• Fin-Stabilized

Soft Nose Cone Rotates 45 deg to Set Lethality Mode

Default Mode is Non-Lethal

Design Concept M2 Impact Mode Characteristics

Projectile Expands Upon Impact, Absorbing and Distributing Impact Energy

Lethal Impact

Projectile maintains integrity and delivers Lethal effects to target

©2012 AAI Corporation All rights reserved

Evaluation of Design Concept M2 Frangible Projectile

	L-NL		Terminal - No	Lethal	
Stabilization	Trajectory	Muzzle	Muzzle Energy	Max	Energy Density
Method	Match	Velocity	Density	Range	@ 100m
Fin	Yes	475	<52 ft-lbs/in ²	50 m	NA

Advantages

- Identical propulsion
- Identical trajectories
- Settings reversible

Disadvantages

- May be difficult to obtain large difference in terminal effects
- Lethal range <100m

Design Concept M3 Variable Proj Mass Variable Proj Velocity **Liquid Filled Projectile** Variable Impact Area • 40 mm Liquid/Gel Fill • Spin-Stabilized **Projectile Body Rotates** to Set Lethality Mode **Default Mode is Non-Lethal**

RON Systems

Design Concept M3 Impact Mode Characteristics

Non-lethal Impact

During projectile compression, holes align and allow liquid/gel to escape, reducing mass & absorbing energy

Nose cone tabs misaligned with base to allow for compression

Lethal Impact

Projectile maintains its shape and mass during impact producing lethal effects

Nose cone and base of projectile aligned, nose cone cannot move.

Evaluation of Design Concept M3 Liquid Filled Projectile

	L-NL		Terminal - No	Lethal	
Stabilization	Trajectory	Muzzle	Muzzle Energy	Max	Energy Density
Method	Match	Velocity	Density	Range	@ 100m
Spin	Yes	175	<52 ft-lbs/in ²	35 m	NA

Advantages

- Identical propulsion
- Identical trajectories
- Settings reversible

Disadvantages

- Sealing
- Structural integrity
 under launch loads
- Lethal range < 100m

Design Concept M4 Operating Mode Characteristics

Non-lethal Operation

Propellant gasses directed to launch non-lethal projectile only

Lethal Operation

Propellant gasses directed to Launch lethal projectile only

Evaluation of Concept M4 Subcaliber Dual Projectiles

	L-NL		Terminal - No	Lethal	
Stabilization	Trajectory	Muzzle	Muzzle Energy	Max	Energy Density
Method	Match	Velocity	Density	Range	@ 100m
Spin	No	350	<52 ft-lbs/in ²	65 m	340 ft-lbs/in ²

Advantages

- Separate projectiles allow independent optimization for function
- Settings reversible

Disadvantages

- Different trajectories/aiming for each projectile type
- Potential lethal projectile accuracy reductionrelies on cartridge case alignment in weapon
- Weight/cost of subcaliber barrel assembly

EXTRON Systems

Design Concept M5 Operating Mode Characteristics

Propellant gasses directed to launch non-lethal projectile only

26

Propellant gasses directed to launch lethal and non-lethal projectile in tandem

Non-lethal projectile falls away after barrel exit, lethal projectile proceeds to target

Non-lethal Operation

TRONSVSten

Evaluation of Design Concept M5 Tandem Dual Projectiles

	L-NL		Terminal - No	Lethal	
Stabilization	Trajectory	Muzzle	Muzzle Energy	Max	Energy Density
Method	Match	Velocity	Density	Range	@ 100m
Spin	No	260	<52 ft-lbs/in ²	120 m	125 ft-lbs/in ²

Advantages

- Separate projectiles allow independent optimization for function
- Settings reversible
- Same launch velocity for each projectile
 - If desired, provides capability for differing launch velocities for each projectile

Disadvantages

- Requires rifled casing
- Potential for non-lethal projectile to disturb flight of lethal projectile during muzzle exit transition

1 = XURON Systems

Concept Evaluation Summary

Concept		Lethal vs Non	-lethal Contro	ol Parameters		Stabiliz	L-NI Trai	Muzzle Velocity	Terminal- N	Ion-lethal	Lethal
		Variable	Variable	Variable	Weapon	Method	Match?		Muzzle	Max Rng	Energy Dens
		Mass	Velocity	Impact Area					Energy Dens	(≤ 26 E.D.)	@ 100 m
C1	Chemical Hardening			~	12ga	Fin	Yes	300 fps	<52 ft-lbs/in ²	120 m	60 ft-lbs/in ²
М1	Nested Dual			~	40mm	Fin	Yes	220	<52	120	95
	Projectiles	•		•			100		-0-		
М2	Frangible Body			~	12ga	Fin	Yes	475	<52	50	NA
М3	Liquid Explusion	✓			40mm	Spin	Yes	175	<52	35	NA
М4	Subcaliber Dual Projectiles	✓	✓	~	12ga	Spin	No	350	<52	65	340
M5	Tandem Dual Projectiles	~			12ga	Spin	No	260	<52	120	125

Conclusions

- Single cartridge can selectively provide both Lethal and Non-lethal effects
- Lethality control feasible via variable projectile mass, velocity, impact area, or combination
- Tandem Dual Projectiles (Concept M5) offers best tradeoff characteristics
 => selected for Phase II follow-on technology maturation

