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Early Event Detection and Characterization 

 Early on in an outbreak (malicious or naturally-occurring) we will 
probably not know what the characteristics of the outbreak are 

 What we do have today (e.g. hospital admission and discharge data) is: 

• Temporal data (e.g. number of hospital admissions on a daily basis) 

• Spatial data (e.g. the zip codes of the patients) 

 We have focused on analyzing this data (available in hospitals or 
biosurveillance systems) to 

• Characterize the event 

• Predict the event 

 My previous talk focused on temporal characterization.  This talk 
emphasizes spatial characterization. 
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Characterization 
 Both temporal and spatial characterization rely on  

INFERENCE 
 What is inference? 

 In deliberate planning (what-if scenario analysis that assesses the 
damage of a theoretical event), analysts use health effects/disease 
models. 

 The analyst sets the parameters of these models as he desires to assess 
worst case scenarios and perform medical planning 
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What is Inference? 
 In real-life situations (crisis response situations), early on, we have little 

understanding of what the event is. 

• All we have is data (usually can get spatial and temporal data) that 
represents some initial stage of the epidemic 

 How can we do prediction? 

 Answer:  use the same models analysts use in deliberate planning for 
crisis response planning 

 Inference is a technique that allows us to fit a particular model’s (e.g. 
Plume Dispersion model’s) parameters to the live data 

 

 

 

Inference allows us to apply existing models to predict real-time 
crisis situations.   
Prediction allows us to implement medical countermeasures and 
SAVE LIVES. 
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We Use Bayesian Techniques to Perform Inference to 
Characterize the Outbreak 

 From Dr. Nicole Rosenzweig’s talk yesterday 

• “decision makers make unambiguous decisions on very ambiguous data”.  
What do we do about this? 

 Bayesian techniques allow us to provide confidence intervals around 
our inferences and predictions (e.g. on a daily basis) 

 Bayesian techniques infer the parameters of an outbreak model from 
the outbreak data available. 

• We formulate the estimation as a statistical inverse problem 

 You are given the “answer”, so what caused it? 

 Solved using an adaptive Markov Chain Monte Carlo sampler 

• All parameters estimated as probability density functions (PDF) 
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Inference – Fitting Models to Data:  Disease Model 
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Data Sources: Time Series 
Data 

Kalman Filter Based Anomaly 
Detection and Epidemic Extraction 

Trigger on anomaly 

Classification Prediction 

Bayesian Disease Classification 
Temporal and Spatial 
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Our Steps for Detecting, Characterizing, and Identifying 
an Outbreak from Syndromic Surveillance Data 
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Previous Analysis with Purely Temporal Information 
 

 Background:  ILI ICD-9 codes 
from Miami data 

 

 Red Line: Calculated anthrax 
outbreak from Wilkening A2 
model, plus visit delay; 500 
index cases 

We get an alarm on day 
180. 

Simulated Anthrax Attack on Day 175 
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How Small An Outbreak Can We Characterize? 

 Tested on simulated anthrax epidemic of various sizes 

 Could estimate Nindex and t  for the attack >= 680 infected cases 

Number of index cases and time 

of attack for an anthrax outbreak 

with 680 index cases.  True 

values indicated in blue 
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Initial Spatio-temporal Analysis - Introduction 

 Syndromic surveillance data is spatio-temporal 
• We generally have the ZIP-codes of infected people 

 Concept:  Spatial data is a rich and very important source of information for 
disease prediction  
• one must know who/when/where people are infected or will become infected   

• Since diseases have an incubation period, there is a window of opportunity to save 
lives.  Can also protect most susceptible population with prophylaxis measures. 

 Contemporary Spatial Analysis Methods 
• Take the available data and cluster it; will provide a good region to concentrate 

resource allocation 

• As more data becomes available, and clusters widen / increase in number, widen 
your area of interest (evidence-based approach) 

• Limitation:  lacks understanding of the source incident, timeliness for planning 

 Conjecture : Can we infer the  future region of infection (where others will 
turn up sick) with sparse data? 
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New York Hospital Admission Data 2007 Count/Location 
Histogram 
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Plume Estimation Approach 

 The key to forecasting infected people is to characterize the attack 
probabilistically 

• Location, size and time 

• Use a dispersion model + epidemic model to identify where the 
incubating and imminently susceptible people are (we already know 
the symptomatic ones) 

 How? The model 

• Use a dispersion model to “spread” an aerosol and infect people with 
different doses 

 Inputs: location of release, amount of release 

• Use an epidemic model (say, for anthrax) to predict the evolution of 
the disease, given infected people with varying doses 

 Inputs: time of infection, # of infected people and their dosages. 
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Plume Estimation Approach (cont.) 

 Inverse problem 

• Data: # of symptomatic people, per day, per zip-code (whose location is 
known) 

• To infer: (x, y, z) location of release point, Q, the # of spores released, t the 
number of days before 1st symptoms, when the people were infected 

 Solution: 

• Use MCMC to create posterior distributions for (x, y, z, log10(Q), t) 

 Tests 
• Test with synthetic data, generated using Wilkening A1 model 

 With sufficient data, we should infer the true release point 

• Can small attacks be inferred? How well? 

• Test with synthetic data, generated using Wilkening’s A2 model 

 Even with infinite data we will not infer back the true parameters 

 But will we come close? How close? 
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Inference – Fitting Models to Data:  Plume Model 
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Case I –Attack with No Model Mismatch 

 50 km X 50 km city, divided into 1 km x 1km grid-cells 

 Left – epidemic curve in a grid-cell 

 Right – epidemic curve summed over all grid-cells 

 

Epidemic curve for the entire city Epidemic curve for a chosen zip-code 
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Inferred Location, Quantity and Time of Release 

 Even 5 days of data is 
good enough 

 True values: 

• X : 15,000 m 

• Y : 17,500 m 

• Log10(Dose) = 14 

• Time = -5 days 

Inferred values of release location (X, Y), release 

size (log10(Q)) and release time. True values 

[15,000; 17,500; 14, -5] 
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Clusters – Observed and Predicted 

Contours show regions where 1% (outer) and 25% 

(inner) of the population are infected as a result of 

the release. Dots are individuals reporting. 

Inferred contours of spore 

concentration. Red contours are at 

30 min intervals.  
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Estimated Distribution of Infected People 

Estimated/true distribution of 

infected people 

Distribution of 

symptomatic 

people on 

Day 5  

Naïve cluster analysis of the observations 

gives a wrong impression of true spatial 

distribution 

 Spatial dissemination over a distributed 
population 

 Estimate affected area from sparse 
(early) data 

 Data = # of sick people / day / zip code 
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Case II – Inference under Model Mismatch 

19 

• 50 km X 50 km city, divided into 1 km x 1km grid-cells 

• Left – epidemic curve in a grid-cell 

• Right – epidemic curve summed over all grid-cells 

 

Epidemic curve for a chosen zip-code Epidemic curve for the entire city 



20 

Inference of Release Parameters 

20 

• Locations inferred 
wrongly – but by about 
2 grid-cells (2 km) 

• Underestimated release 
quantity 

• Bigger uncertainties in 
time 

• No improvement with 
addition of data (beyond 
5 days) 

Inferred values of release location (X, Y), release 

size (log10(Q)) and release time. True values 

[15,000; 17,500; 14, -5] 
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Contours – Observed and Predicted 

Clustering still OK even 

with model mismatch 

Contours show regions where 1% (outer) and 25% 

(inner) of the population are infected as a result of 

the release. Dots are individuals reporting. 
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Model-Informed Spatial Analysis 

Model-enabled reconstruction provides a better starting point for 
clustering/analyzing spatial biosurveillance data 

True distribution Reconstruction 
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Temporal-Spatio Visualization Prototype 

 Pure visualization alone is very useful for understanding outbreaks 

 Prototype “Heat Map” of reports by zip code 

• Color based on number of events 

• Current day or cumulative counts 

• Animates changes  in “playback” mode through time 

 Future Enhancements Possible 

• Add source term estimation, etc. 

• Medical Resource Planning, etc. 
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Daily Report Heat Map 
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Daily Report Heat Map 
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Cumulative Report Heat Map 
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Cumulative Report Heat Map 
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