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Early Event Detection and Characterization

= Early onin an outbreak (malicious or naturally-occurring) we will
probably not know what the characteristics of the outbreak are
= What we do have today (e.g. hospital admission and discharge data) is:
 Temporal data (e.g. number of hospital admissions on a daily basis)
e Spatial data (e.g. the zip codes of the patients)
= We have focused on analyzing this data (available in hospitals or
biosurveillance systems) to
* Characterize the event
* Predict the event

= My previous talk focused on temporal characterization. This talk
emphasizes spatial characterization.
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Characterization

= Both temporal and spatial characterization rely on

INFERENCE

= What is inference?

= |n deliberate planning (what-if scenario analysis that assesses the
damage of a theoretical event), analysts use health effects/disease
models.

= The analyst sets the parameters of these models as he desires to assess
worst case scenarios and perform medical planning

MODEL
PARAMETERS
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What is Inference?

= |n real-life situations (crisis response situations), early on, we have little
understanding of what the event is.

e All we have is data (usually can get spatial and temporal data) that
represents some initial stage of the epidemic

= How can we do prediction?

= Answer: use the same models analysts use in deliberate planning for
crisis response planning

= Inference is a technique that allows us to fit a particular model’s (e.g.
Plume Dispersion model’s) parameters to the live data

Inference allows us to apply existing models to predict real-time
crisis situations.

Prediction allows us to implement medical countermeasures and
SAVE LIVES.
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We Use Bayesian Techniques to Perform Inference to
Characterize the Outbreak

= From Dr. Nicole Rosenzweig’s talk yesterday

* “decision makers make unambiguous decisions on very ambiguous data”.
What do we do about this?

= Bayesian techniques allow us to provide confidence intervals around
our inferences and predictions (e.g. on a daily basis)

= Bayesian techniques infer the parameters of an outbreak model from
the outbreak data available.

* We formulate the estimation as a statistical inverse problem
= You are given the “answer”, so what caused it?

= Solved using an adaptive Markov Chain Monte Carlo sampler
* All parameters estimated as probability density functions (PDF)
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Inference - Fitting Models to Data: Disease Model
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Our Steps for Detecting, Characterizing, and Identifying
an Outbreak from Syndromic Surveillance Data

Data Sources: Time Series
M\ Data
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Previous Analysis with Purely Temporal Information

Simulated Anthrax Attack on Day 175

Anthrax, start day: 175

= Background: ILI ICD-9 codes
from Miami data
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How Small An Outbreak Can We Characterize?

Number of index cases and time

3
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of attack for an anthrax outbreak

o] \ [ | with 680 index cases. True

: s ™ = values indicated in blue

Days since attack

3

No. of index cases
(g) By 0 [}
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= Tested on simulated anthrax epidemic of various sizes

= Could estimate N and 7 for the attack >= 680 infected cases

index
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Initial Spatio-temporal Analysis - Introduction

Syndromic surveillance data is spatio-temporal

* We generally have the ZIP-codes of infected people
Concept: Spatial data is a rich and very important source of information for
disease prediction

* one must know who/when/where people are infected or will become infected

* Since diseases have an incubation period, there is a window of opportunity to save
lives. Can also protect most susceptible population with prophylaxis measures.

Contemporary Spatial Analysis Methods

e Take the available data and cluster it; will provide a good region to concentrate
resource allocation

* As more data becomes available, and clusters widen / increase in number, widen
your area of interest (evidence-based approach)

e Limitation: lacks understanding of the source incident, timeliness for planning

Conjecture : Can we infer the future region of infection (where others will
turn up sick) with sparse data?

R
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New York Hospital Admission Data 2007 Count/Location
Histogram

Data SIO, NOAA U'S. Navy, NGA, GEBCO

—
Image USDA Farm Service Agency, s (Jooqlc
| - C
Image PA Department 9' Conservation and Natural Resources-PAMAP/USGS
40°50°17 .80 N 73°53:11:38*W elev. 41 m Eye alt 140.86 km
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Plume Estimation Approach

= The key to forecasting infected people is to characterize the attack
probabilistically

e Location, size and time

e Use a dispersion model + epidemic model to identify where the
incubating and imminently susceptible people are (we already know
the symptomatic ones)

= How? The model
* Use a dispersion model to “spread” an aerosol and infect people with
different doses
= |nputs: location of release, amount of release

e Use an epidemic model (say, for anthrax) to predict the evolution of
the disease, given infected people with varying doses

= |nputs: time of infection, # of infected people and their dosages.

R
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Plume Estimation Approach (cont.)

= |nverse problem

* Data: # of symptomatic people, per day, per zip-code (whose location is
known)

* Toinfer: (x, v, z) location of release point, Q, the # of spores released, t the
number of days before 15t symptoms, when the people were infected

=  Solution:
* Use MCMC to create posterior distributions for (x, y, z, log,,(Q), t)

= Tests
e Test with synthetic data, generated using Wilkening A1 model
= With sufficient data, we should infer the true release point
e Can small attacks be inferred? How well?
e Test with synthetic data, generated using Wilkening’s A2 model

= Even with infinite data we will not infer back the true parameters
= But will we come close? How close?

B
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Inference - Fitting Models to Data: Plume Model

Meteorological Black-box plume attack model
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Case | —Attack with No Model Mismatch

Large attack infection count Sum of cities for each day
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= 50 km X 50 km city, divided into 1 km x 1km grid-cells
= Left — epidemic curve in a grid-cell
= Right — epidemic curve summed over all grid-cells
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Inferred Location, Quantity and Time of Release

Rlease coordinate: X Rlease coordinate: Y
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[15,000; 17,500; 14, -5]
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Clusters — Observed and Predicted

Plume contours at 1 spore/m*3 level
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Estimated Distribution of Infected People

=  Spatial dissemination over a distributed
population

= Estimate affected area from sparse
(early) data

= Data = # of sick people / day / zip code

Locations of symptomatic people
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Naive cluster analysis of the observations
gives a wrong impression of true spatial
distribution
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Case Il — Inference under Model Mismatch

Epidemic curve for the entire city Epidemic curve for a chosen zip-code
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* 50 km X 50 km city, divided into 1 km x 1km grid-cells
e Left —epidemic curve in a grid-cell
* Right —epidemic curve summed over all grid-cells
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Inference of Release Parameters

* Locations inferred
wrongly — but by about
2 grid-cells (2 km)

* Underestimated release
guantity

* Bigger uncertainties in
time

* No improvement with

addition of data (beyond
5 days)
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Contours — Observed and Predicted

Clustering still OK even
with model mismatch
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Contours show regions where 1% (outer) and 25%
(inner) of the population are infected as a result of
the release. Dots are individuals reporting.
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Model-Informed Spatial Analysis

number of infected people
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Model-enabled reconstruction provides a better starting point for
clustering/analyzing spatial biosurveillance data
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Temporal-Spatio Visualization Prototype

= Pure visualization alone is very useful for understanding outbreaks
= Prototype “Heat Map” of reports by zip code

* Color based on number of events

e Current day or cumulative counts

* Animates changes in “playback” mode through time
=  Future Enhancements Possible

* Add source term estimation, etc.

* Medical Resource Planning, etc.

B
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Daily Report Heat Map
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Daily Report Heat Map
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Cumulative Report Heat Map
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Cumulative Report Heat Map
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