

expanding the realm of POSSIBILITY®

Spatial and Temporal Data Fusion for Biosurveillance

Karen Cheng, David Crary Applied Research Associates, Inc. Jaideep Ray, Cosmin Safta, Mahmudul Hasan Sandia National Laboratories

Contact: Ms. Karen Cheng, kcheng@ara.com, 571-814-2411

Early Event Detection and Characterization

- Early on in an outbreak (malicious or naturally-occurring) we will probably not know what the characteristics of the outbreak are
- What we do have today (e.g. hospital admission and discharge data) is:
 - Temporal data (e.g. number of hospital admissions on a daily basis)
 - Spatial data (e.g. the zip codes of the patients)
- We have focused on analyzing this data (available in hospitals or biosurveillance systems) to
 - Characterize the event
 - Predict the event
- My previous talk focused on temporal characterization. This talk emphasizes spatial characterization.

Characterization

Both temporal and spatial characterization rely on

INFERENCE

What is inference?

- In deliberate planning (what-if scenario analysis that assesses the damage of a theoretical event), analysts use health effects/disease models.
- The analyst sets the parameters of these models as he desires to assess worst case scenarios and perform medical planning

What is Inference?

- In real-life situations (crisis response situations), early on, we have little understanding of what the event is.
 - All we have is data (usually can get spatial and temporal data) that represents some initial stage of the epidemic
- How can we do prediction?
- Answer: use the same models analysts use in deliberate planning for crisis response planning
- Inference is a technique that allows us to fit a particular model's (e.g. Plume Dispersion model's) parameters to the live data

Inference allows us to apply existing models to predict real-time crisis situations. Prediction allows us to implement medical countermeasures and SAVE LIVES.

We Use Bayesian Techniques to Perform Inference to Characterize the Outbreak

- From Dr. Nicole Rosenzweig's talk yesterday
 - "decision makers make unambiguous decisions on very ambiguous data".
 What do we do about this?
- Bayesian techniques allow us to provide confidence intervals around our inferences and predictions (e.g. on a daily basis)
- Bayesian techniques infer the parameters of an outbreak model from the outbreak data available.
 - We formulate the estimation as a statistical inverse problem
 - You are given the "answer", so what caused it?
- Solved using an adaptive Markov Chain Monte Carlo sampler
 - All parameters estimated as probability density functions (PDF)

Inference – Fitting Models to Data: Disease Model

Save; Probable attack scenario

Our Steps for Detecting, Characterizing, and Identifying an Outbreak from Syndromic Surveillance Data

Previous Analysis with Purely Temporal Information

Simulated Anthrax Attack on Day 175

- Background: ILI ICD-9 codes
 from Miami data
- Red Line: Calculated anthrax
 outbreak from Wilkening A2
 model, plus visit delay; 500
 index cases

We get an alarm on day 180.

How Small An Outbreak Can We Characterize?

expanding the realm of POSSIBILITY

> Number of index cases and time of attack for an anthrax outbreak with 680 index cases. True values indicated in blue

- Tested on simulated anthrax epidemic of various sizes
- Could estimate N_{index} and τ for the attack >= 680 infected cases

Initial Spatio-temporal Analysis - Introduction

- Syndromic surveillance data is spatio-temporal
 - We generally have the ZIP-codes of infected people
- Concept: Spatial data is a rich and very important source of information for disease prediction
 - one must know who/when/where people are infected or will become infected
 - Since diseases have an incubation period, there is a window of opportunity to save lives. Can also protect most susceptible population with prophylaxis measures.
- Contemporary Spatial Analysis Methods
 - Take the available data and cluster it; will provide a good region to concentrate resource allocation
 - As more data becomes available, and clusters widen / increase in number, widen your area of interest (evidence-based approach)
 - Limitation: lacks understanding of the source incident, timeliness for planning
- Conjecture : Can we infer the future region of infection (where others will turn up sick) with sparse data?

New York Hospital Admission Data 2007 Count/Location Histogram

Plume Estimation Approach

- The key to forecasting infected people is to characterize the attack probabilistically
 - Location, size and time
 - Use a dispersion model + epidemic model to identify where the incubating and imminently susceptible people are (we already know the symptomatic ones)
- How? The model

POSSIBIL IT

- Use a dispersion model to "spread" an aerosol and infect people with different doses
 - Inputs: location of release, amount of release
- Use an epidemic model (say, for anthrax) to predict the evolution of the disease, given infected people with varying doses
 - Inputs: time of infection, # of infected people and their dosages.

Plume Estimation Approach (cont.)

- Inverse problem
 - Data: # of symptomatic people, per day, per zip-code (whose location is known)
 - To infer: (x, y, z) location of release point, Q, the # of spores released, t the number of days before 1st symptoms, when the people were infected
- Solution:

POSSIBILIT

- Use MCMC to create posterior distributions for (x, y, z, log₁₀(Q), t)
- Tests
 - Test with synthetic data, generated using Wilkening A1 model
 - With sufficient data, we should infer the true release point
 - Can small attacks be inferred? How well?
 - Test with synthetic data, generated using Wilkening's A2 model
 - Even with infinite data we will not infer back the true parameters
 - But will we come close? How close?

Inference – Fitting Models to Data: Plume Model

expanding the realm of **POSSIBILITY**[®]

- 50 km X 50 km city, divided into 1 km x 1km grid-cells
- Left epidemic curve in a grid-cell
- Right epidemic curve summed over all grid-cells

expanding the realm of **POSSIBILITY**[®]

Inferred Location, Quantity and Time of Release

- Even 5 days of data is good enough
- True values:

expanding the realm of **POSSIBILITY**[®]

- X : 15,000 m
- Y : 17,500 m
- Log₁₀(Dose) = 14
- Time = -5 days

Inferred values of release location (X, Y), release size $(log_{10}(Q))$ and release time. True values [15,000; 17,500; 14, -5]

Clusters – Observed and Predicted

Inferred contours of spore concentration. Red contours are at 30 min intervals. Contours show regions where 1% (outer) and 25% (inner) of the population are infected as a result of the release. Dots are individuals reporting.

expanding the realm of **POSSIBILITY**®

50000

Estimated Distribution of Infected People

- Spatial dissemination over a distributed population
- Estimate affected area from sparse (early) data

expanding the realm of **POSSIBILITY**[®]

Data = # of sick people / day / zip code

Estimated/true distribution of infected people

Naïve cluster analysis of the observations gives a wrong impression of true spatial distribution

Locations of symptomatic people

Case II – Inference under Model Mismatch

- 50 km X 50 km city, divided into 1 km x 1km grid-cells
- Left epidemic curve in a grid-cell
- Right epidemic curve summed over all grid-cells

Inference of Release Parameters

 Locations inferred wrongly – but by about 2 grid-cells (2 km)

expanding the realm of POSSIBILITY

- Underestimated release quantity
- Bigger uncertainties in time
- No improvement with addition of data (beyond 5 days)

Inferred values of release location (X, Y), release size $(log_{10}(Q))$ and release time. True values [15,000; 17,500; 14, -5]

Contours – Observed and Predicted

Contour map at .01 and .25

Clustering still OK even with model mismatch

expanding the realm of **POSSIBILITY**®

Contours show regions where 1% (outer) and 25% (inner) of the population are infected as a result of the release. Dots are individuals reporting.

Model-Informed Spatial Analysis

Model-enabled reconstruction provides a better starting point for clustering/analyzing spatial biosurveillance data

Temporal-Spatio Visualization Prototype

- Pure visualization alone is very useful for understanding outbreaks
- Prototype "Heat Map" of reports by zip code
 - Color based on number of events
 - Current day or cumulative counts
 - Animates changes in "playback" mode through time
- Future Enhancements Possible

POSSIBIL IT

- Add source term estimation, etc.
- Medical Resource Planning, etc.

Daily Report Heat Map

Daily Report Heat Map

Cumulative Report Heat Map

Cumulative Report Heat Map

Acknowledgements

This work is funded by the Defense Threat Reduction Agency (DTRA) Ms. Nancy Nurthen at DTRA is the Program Manager.

