create collaborate communicate

24 Month Diagnostics and Biosurveillance Challenge:

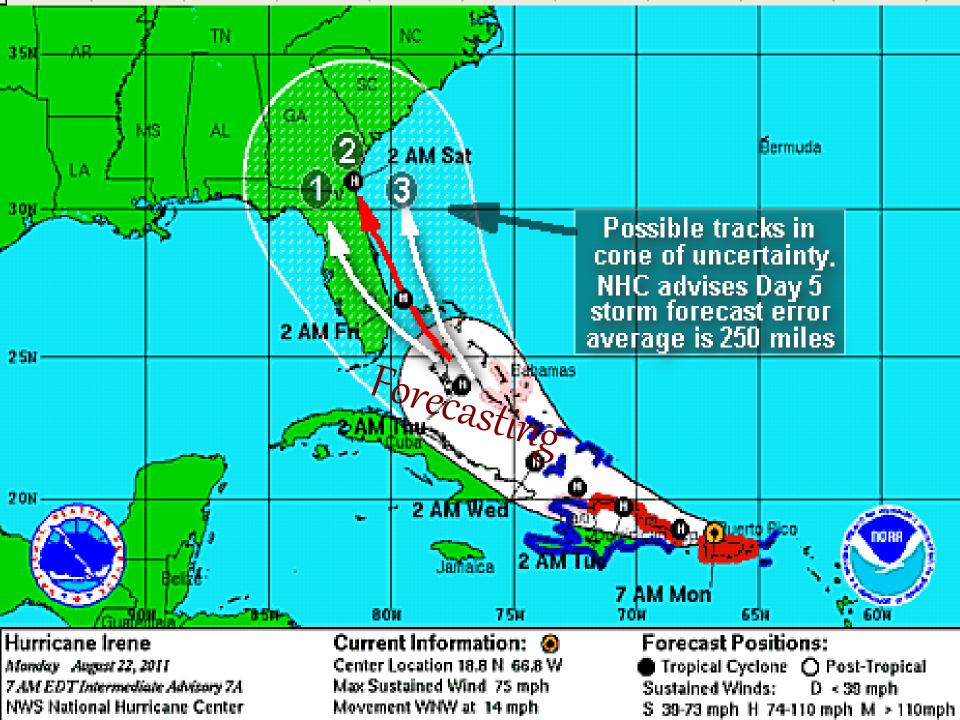
BSV Ecosystem (BSVE) and Role 0/1 Diagnostic Devices

DEFENSE THREAT REDUCTION AGENCY

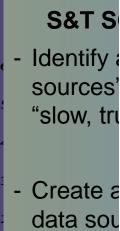
JOINT SCIENCE AND TECHNOLOGY OFFICE

CHEMICAL AND BIOLOGICAL DEFENSE

Diagnostics, Detection and Disease Surveillance Division (CBA) Defense Threat Reduction Agency Research & Development Chem-Bio Technologies Approved for Public Release; distribution unlimited



DoD biosurveillance systems do not provide us with early warning....


we only learn about what happened after it is too late.

OUR "HURRICANE"

- Enable i impact f

need an

Clinic Record

Number of Cases

- Collabor environr

NATIONAL STRATEGY FOR BIOSURVEILLANCE

Biosurveillance Goal: achieve a wellintegrated national biosurveillance enterprise that saves lives by providing essential information for better decision making at all levels through four core functions:

- 1. Scan and discern the environment
- 2. Identify and Integrate Essential Information
- 3. Alert and Inform Decision Makers
- 4. Forecast and Advise Impacts

2 months and 1 week later... WHO CONFIRMS

or 12-Apr

imeline: Social Media, Records, egators, Laboratory

USER/ANALYST COMMUNITY

- Workshop
 - Involved S&T, Requirements, Users, Industry, Acquisition
- Interviews
 - Established baseline and elicited workflow activities
 - NCMI Intelligence Community Lead for Disease Surveillance
 - NORTHCOM Pandemic Influenza Lead
 - HHS Civilian Lead for Disease Surveillance

- Boston Public Health Command
- ✓ COCOMs
- ✓ Naval Health Research Center
- Naval and Marine Corps Public Health Center
- ✓ NEPMU-2
- KEY OUTCOME: Current Public Health (ESSENCE), DoD (Health Affairs), Interagency (BioSense 2.0) Surveillance Systems are...
 - EVENT-based, stove-piped based on organizational mission
 - Reliant upon traditional (clinical) data sources; lab results take weeks to provide actionable information

 Surveying only human (sometimes just military) populations will not provide early warning

HOW IT'S DONE NOW: BSV DYSFUNCTION

Analyst scans multiple, various data sources for signals Hunts/gathers data manually

Analyst interprets data for importance, analytics not connected to data

Analyst collaborates with other analysts

Analyst confirms/denies signal

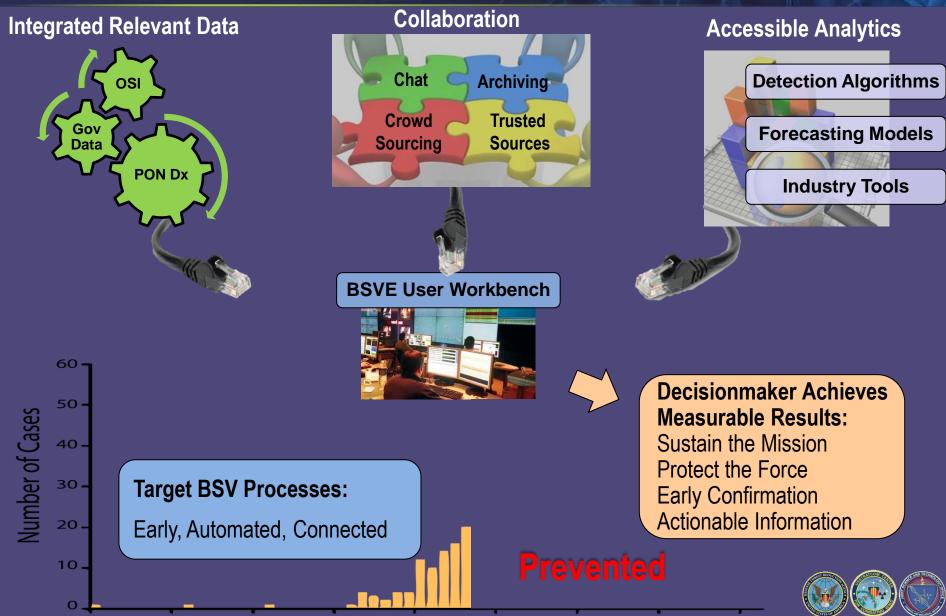
Analyst produces report

Connections present, but not made

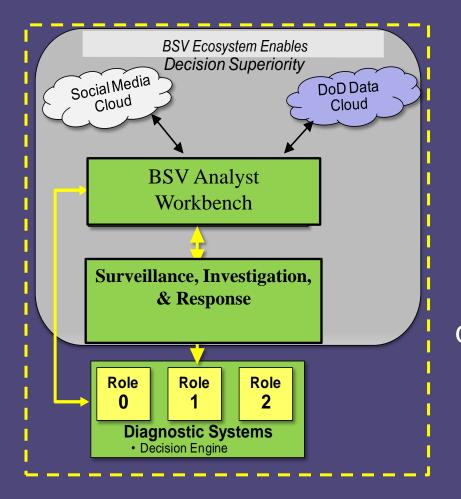
Manual, laborious

Iterative process

No knowledge management


Constant repetition

No archiving/sharing

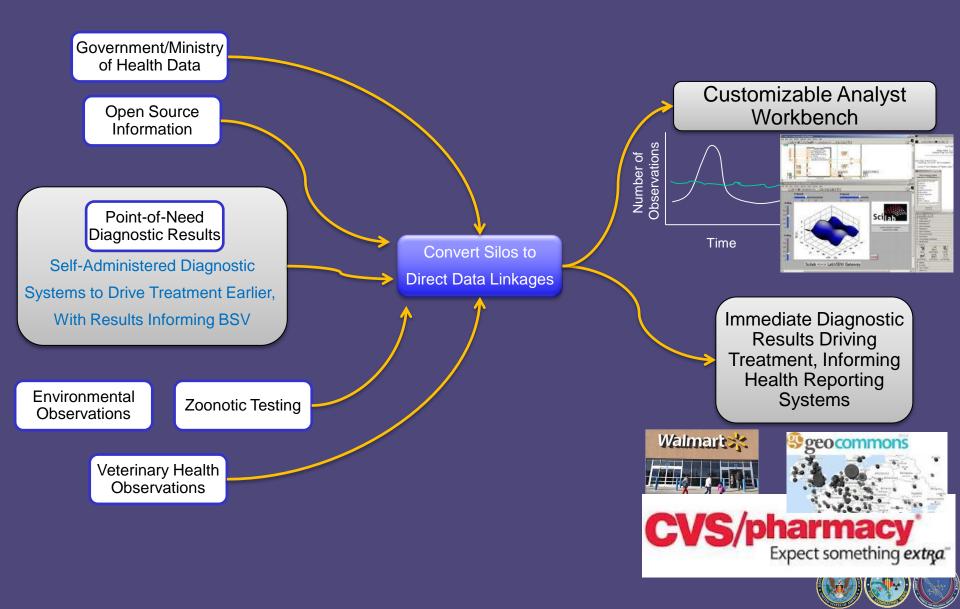

Decision maker gets information too late to make a difference

A NEW APPROACH IS NEEDED: BIOSURVEILLANCE ECOSYSTEM (BSVE)

24-MONTH CHALLENGE OBJECTIVE

24-Month Challenge will demonstrate linking: "a well-integrated BSV Ecosystem that saves lives by providing PON diagnostics for better decision making at all levels"

HARNESS INDUSTRY TO CHANGE THE GAME


- Exploit the industry framework that has evolved to warn, forecast, and proactively respond to disasters
- Research, develop, and demonstrate to the public and to industry – a commercially viable early warning/response system for outbreaks

DESIGNED FOR:

- Mutually positive private sector and government impact
- Widespread sustainment (by the private sector) and use well beyond the initial government investment

A TRANSFORMATION FOR HEALTHCARE AND BIOSURVEILLANCE

DETAILED DISEASE CANDIDATES FOR DEMONSTRATION

 Syndromically-targeted, multiplexed diagnostic system considered most useful for purposes of 24 Month Challenge Demo, according to CBA external medical focus group:

Severe acute systemic febrile illness (SASFI)

<u>Priority α </u>

- Malaria (P. falciparum)
- Dengue
- Melioidosis (Burkholderia pseudomallei)

<u>Priority</u> β

- Lassa Fever
- B. anthracis (anthrax)
- Y. pestis (plague)

POINT-OF- NEED DIAGNOSTIC SYSTEMS

- Role 0: very simple and rugged devices suitable for self-use and use by nonmedically trained service members
- Role 1: handheld electronic systems for use in forward (medical level 1 care) environments

- Fast, easy to use, sample-to-answer systems
- Compatible with existing communications infrastructure²
- At clinical research stage in 24 months
- Suitable for eventual FDA clearance and CLIA waiver (monthly meetings with FDA scheduled; concept fits with FDA paradigm shift to separate results interpretation from device/user)

Also includes uses with non-human samples (e.g. insect vectors, livestock, food, environment), which would be performed by technical operators
With use of external reader for Role 0 systems

DEVICE CANDIDATES

Role 0	Role 1		
Rapid Pathogen Screening	BD Veritor		
FIO *	Epistem GeneDrive		
Diagnostics for All	Quidel Sophia		
SD Bioline	MesoScale Diagnostics		
	Mesa Tech (In Negotiations for Contract)		
	Phillips Royal Electronics		
	Multiplex PCR Device (In Negotiations for Contract)		
	Luminex (Miniature PCR/Immuno)		
	Wave 80		

 DTRA has funded 3 Evaluation Labs to develop and test Point-of-Need diagnostic devices (NRL, JHU/APL, LLNL)

* Not actual assay, just a reader

OCONUS CLINICAL SITES FOR 24 MONTH DEMONSTRATION

Base Site and Location	Number and Location of Cohort Sites	Prevalent Disease States for Study	Estimated Prevalence of Target Pathogen (%) ^{2,3,4}	# of Patients with Selected Pathogen Required for Testing Device Performance ⁵	Sample Size Goal (# of acute febrile patients needed, based on estimated prevalence)	Past Number of Acute Febrile Patients per Year ^{2,3,4}
NAMRU-2¹ (SE Asia)	Will include sites in Cambodia (9), Thailand (2), and Northern Australia (1)	Dengue, Malaria (<i>P. falciparum</i>) and Melioidosis (<i>Burkholderia</i> <i>pseudomallei</i>)	Dengue: 8-10% Malaria: 2-5% Melioidosis: Pending	Dengue: 245 Malaria: 245 Melioidosis: 200	2450 4900 Pending	3325 3318 Pending ⁶
NAMRU-6 ² (Peru)	Iquitos, Peru (~12)	Dengue	20-25%	245	980-1225	1345
USAMRU-K ³ (East Africa)	Will include sites in Kenya (~8) and Uganda (~2)	Malaria (<i>P. falciparum</i>) Plague (<i>Y. pestis)</i>	20-25% pending	245 200	980-1225 Pending	750 ⁴ Pending

¹ Actual number of sites to be determined after site visit in September 2012.

² Data extrapolated from M. Kasper, *et al* (2012). *Am J Trop Med Hyg* 86(2): 246-253—reports confirmed dengue in 883/9975 and confirmed *P. falciparum* malaria in 216/9954 cases from surveillance data in Phnom Penh, Cambodia (9 clinical sites) from 2006 to 2009. Also, *P. vivax* seen in 481/9954 cases.

³ Data extrapolated from B. Forshey (2010), et al. *PLoS NTD* 4(8): e787—reports confirmed dengue in 2482/10,739 from surveillance data in Iquitos from 2000 to 2007.

⁴ Data extrapolated from unpublished archived sample data from Dr. John Waitumbi (USAMRU-K). Reports confirmed *P. falciparum* malaria in 599/2240 cases from 2009 to 2012 in their febrile surveillance cohort. Dr. Waitumbi states that absolute numbers can be increased at select sites in order to capture required samples at a quicker rate.

⁵ In order to test performance characteristics of both role 0/1 device, calculation of pathogen amount needed for validation is based on tier 0 estimate of sensitivity and precision. ⁶ Data to be collected in September, 2012 after face to face discussion with sites.

> <u>Goal</u>-create signal over noise with near real-time uplink to BSV Ecosystem (Jan – Dec, 2014)

PROGRESS TO DATE

BSVE

- Nov 2011: Biosurveillance Workshop
- Jan 2012: Industry Days (San Jose, CA and Chantilly, VA)
- Jan 2012: BAA/Service Call released
- Feb-Jul 2012: BSV Ecosystem Team Interviews with BSV Users
- July 2012: BAA Performers Selected
- Aug 2012: BSVE User Workflow Report Completed
- Aug 2012: BSVE User Group Forum
- Oct 2012: BSV Ecosystem Contracts Awarded, Kickoff, & JPEO Coordination

24 Month Challenge

- January 2012: 24 Month Challenge Starts
- March 2012: Industry Day and RFI Released
- May 2012: Device Evaluation Labs on Contract
- August 2012: Device Performers on Contract (12 Technologies)
- October 2012: Program Review & JPEO Coordination

24 MONTH CHALLENGE PROGRAM TIMELINE

January	August	February	December	January 2014	December
2012	2012	2013	2013		2014
24 Month Clock Starts	Device Performers on Contract 12 technologies 9 Role 1 3 Role 0	1st Device Down-select (3-5 technologies) Technical Demo of device-BSV Ecosystem Linkage	2 nd Device Down- select (1-2 technologies) Ideally at least one Role 0 and one Role 1 move forward	Begin OCONUS Demo Continual clinical patient study Intermittent Month-long BSV Ecosystem/Device Linkage Demos	Finish OCONUS Demo

Out year work could include different syndrome panels, further development of technologies and integration of host response or novel assays into diagnostic platforms

