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Bio-surveillance from Big Data: Big Challenges 

Deliver the capability to 
mine, search and analyze this 
data in near real time 

Information Technology 

We generate 2 quintillion bytes (2 x 1018) of data every day.(IBM) 

Data  Discovery  Insights 

Resiliency Analysis and 
Coordination System 

VERDE 
(Visualizing the electric grid) 

CMS Analytics 
(Decision from Big Data) 

Zero Day Attack Detection 

• genome scale 

experiments 

• proteomics 

• structural biology, 

• clinical studies 

• disease spread 

models 

• molecular 

dynamics 

• social networks 

• history of 

communicable 

diseases 

• archives of health 

records 

• twitter,  

• facebook 

• environmental 

monitors,  

• weather/climate 

monitors 

• hospital sensors, 

• other sources 

http://images.google.com/imgres?imgurl=http://www.st.com/stonline/stappl/publish/stwebresources/PL__Press__Release/CERN_LHC_t2030shigh.jpeg&imgrefurl=http://wk.typepad.com/weblog/2008/02/ted-2008---sess.html&h=514&w=789&sz=606&hl=en&start=3&sig2=JpG3uuLLGQaVlbdCCTHJfw&um=1&tbnid=LVmRtlYltPxfNM:&tbnh=93&tbnw=143&ei=PQFWSOzDBqOYoQSlwr2TAw&prev=/images?q=lhc&um=1&hl=en&rls=com.microsoft:*:IE-SearchBox&rlz=1I7GGLR&sa=N
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Analyzing Big Data from Bio-surveillance… 

• Event Detection: time-points where 

there is deviation from “normal” 

behavior 

 

• Multi-scale Feature Extraction: 

intrinsic structure of data 

 

• Cluster & Visualize: simplifying the 

interpretation for meaningful 

insights 

Wish you 
had done it 
in 6.5 s? 

Data  Insights  Discovery 

• Suite of statistical and machine learning tools for: 

– discovering inherent statistical structure of domain 
specific big data 

– providing testable hypotheses (“actionable insights”) 

 

• Challenges faced in developing a computational 
infrastructure: 

– Volume/Velocity 

– Scaling algorithms 

What is this talk about … 
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Part 1: Online Event Detection 

• Spatio-temporal correlations 

• Dynamical clustering 

Anomaly 
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Motivation: Detecting spatio-temporally correlated 
patterns in real-time data streams (Twitter) 

• Outbreak: 

– Flu, dengue, west Nile virus, etc 

• GPS Location: 

– Multi-scale: local to regional to national 
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Visualizing terms associated with west nile virus 
as a stacked graph, indicating distinct time-
varying patterns in disease association. 

Neoformix: Visualizing Twitter data 

• Which geographic regions exhibit correlated patterns in 
twitter patterns? 

- Indicative of emergent patterns in spread of disease/ outbreak 
- Can be across diseases or regions or along time 

 

• At what time-points do these patterns change? 
- Anomalies indicative of sudden surges in infections 
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Tensor representation for text data streams 

N 

N 

T 

Collect data 

from social 

networks 

3D tensor of outbreak terms + 

locations evolving over time 

• Conceptually the data is 
a collection of matrices 

 

• Conveniently 
represented as a tensor 

Tensors are N-dimensional matrices, that are 
useful to capture multi-way dependencies 
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Online Tensor Analysis 

Ud 

 

UT
d 

 
Sd 
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update 3 
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Ramanathan, A., Agarwal, P.K., Kurnikova, M. and Langmead, C., RECOMB 2009. 
Sun, J., Faloutsos, C., and Kolda, T., KDD 2006. 

New data 

For every dimension d 

Cd Cd + X(d)X
T

(d) Cd  Ud Sd U
T

d 
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Kolda, T. and Bader, B. W., 2005. Tech. Report, Sandia 
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Translating to a small world! 

8 

• Which regions of the 
molecule are moving 
together? 
 

• At which time-points are 
the spatio-temporal 
patterns of motions 
changing? 

x1, y1, z1 

x2, y2, z2 …
 

 …
 

 …
 

 

xN, yN, zN 

x1, y1, z1 

x2, y2, z2 …
 

 …
 

 …
 

 

xN, yN, zN 

x1, y1, z1 

x2, y2, z2 …
 

 …
 

 …
 

 

xN, yN, zN 

x1, y1, z1 

x2, y2, z2 …
 

 …
 

 …
 

 

xN, yN, zN 

0 T 1 

…, …, …,  

Time =  

Data 

Bag of Words 

T-1 
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Data  Insights  Discovery: 
Time-points where spatio-temporal correlations change  
can be used to control simulations 

Structural differences shown in green 

Clustering spatial regions in the enzyme 
showing similar patterns of motion 
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Key Contributions 

An online tool for data mining: 

 

1. Anomaly detection: 

– time points where social media patterns change 

– Can be used to track disease outbreak 

 

2. Spatio-temporal pattern discovery: 

– cluster geographical regions based on media patterns 

 

3. Data summarization 
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Part 2: Discovering inherent statistical structure in 
big data 
• Organizing high dimensional spaces 

• Odor perception 
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Motivation: Towards machine olfaction… 

• Odor perception: 
– What is the perceptual space of the 

human olfactome? 

• 31 million molecules from 
Pubchem!! 

– Big Data: How to organize this 
space? 

• We don’t have this organization: 

– Can we build this from data? 

– Statistical characteristics from both 
psychophysics & chemical spaces 

Pleasant? 

Unpleasant? 
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Using semi-supervised learning to “odor” label 
the Pubchem  

• Label small portion of the data 
with odor percepts 

– Derive physio-chemical 
features from labeled data 

• Graph-kernel approaches to 
quickly compare compounds 

• Propagate labels on successively to 
larger data sets (flavornet, 
superscent) 

• Test / Validate / Refine 

Castro, J.B., Ramanathan, A., Chennubhotla, C.S. (2012) PLoS One (in preparation) 
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Building a perceptual model of odors on Atlas of 
Odor Chemical Percepts (AOCP) 

• 144 odors; ~150 odor descriptors 

• Use non-negative matrix 
factorization for dimensionality 
reduction 

• Rigorous cross validation 
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Data  Insights  Discovery 
Odors with similar perception share unique physio-chemical 
signatures 

• Fruits and sewer have 
distinct chemical features: 

– nRCOOCR 

– nS 

• Identified automatically 
from over 1600 physio-
chemical features  
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Key Contributions & Future Work 

A machine learning framework to relate chemicals to their odor 
percepts: 

• Discovery of underlying statistical structure within large-scale 
datasets 

– how do people perceive odors? 

– linking “odor perception” to “chemical signatures” 

• Organizing odors into a perceptual frame of reference: 
Olfactome: using novel machine learning tools 

– integration with psycho-physics experiments 

– expanding the compounds to include a larger chemical repertoire 
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Part 3: Moving to the cloud… 

• Organizing high dimensional spaces 

• Auto-regressive models 

• Bio-medical applications 
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Motivation: Automate detection of patterns 
from disparate, distributed data 

• Data: Twitter Feed / Social 
media 

– Globally distributed data 

– Large volume 

• Temporal models: 

– patterns in disease spread 

• Generative models: 

– predicting how disease may 
spread 

 

L1 

L3 

L5 
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Bio-surveillance and the Cloud 

Bio-surveillance data 

• is BIG and NOISY 

 

• requires repetitive analysis in chunks 

 

 

• modeling involves linear algebra and 
statistics 
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Example: Biological Visualization & Data Analytics for 
Disease Diagnostics 

• Data@ University of 
Pittsburgh:  
• Dr. Cecilia Lo’s lab 
• Drug-discovery 

Institute 
• Compute Cloud: 

Qloud@CMU-Qatar, 
Dr. Majd Sakr 
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Summary 

• An overview of a computational infrastructure that 
implements scalable machine learning algorithms to: 

– discover inherent structure from various sources of bio-
surveillance data 

– provide near real-time feedback for end-users on emerging 
patterns 

• Challenges include:  

– Seamlessly fusing multiple data sources 

– Standards across the globe differ! 
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