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Bio-surveillance from Big Data: Big Challenges

We generate 2 quintillion bytes (2 x 1018) of data every day.(8BM)

Archives Social Media Sensors

Data = Discovery = Insights

* twitter, * environmental

* genome scale
TR ey
m r/climate

experiments
* proteomics * molecular
« structural biology, dynamics * archives
clinical studies * social networks records
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The Challenge

Enable Discovery

Deliver the capability to =
mine, search and analyze this '
data in near real time

Resiliency Analysis and
Coordination System

CMS Analytics
(Decision from Big Data)
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Analyzing Big Data from Bio-surveillance...

What is this talk about ...

* Suite of statistical and machine learning tools for:

— discovering inherent statistical structure of domain
specific big data

— providing testable hypotheses (“actionable insights”)

* Challenges faced in developing a computational
infrastructure:

— Volume/Velocity

— Scaling algorithms
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Part 1: Online Event Detection

* Spatio-temporal correlations

* Dynamical clustering



Motivation: Detecting spatio-temporally correlated
patterns in real-time data streams (Twitter)

-

* Which geographic regions exhibit correlated patterns in

twitter patterns?
Indicative of emergent patterns in spread of disease/ outbreak
Can be across diseases or regions or along time

* At what time-points do these patterns change?
- Anomalies indicative of sudden surges in infections

varying patterns in disease association.

Neoformix: Visualizing Twitter data




Tensor representation for text data streams

Flu associated markers

Fever Pain | Death | Emerg ...
ency

* Conceptually the data is
a collection of matrices
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GPS position

* Conveniently Collect data
S ~ from social
represented as a tensor

networks

Tensors are N-dimensional matrices, that are

useful to capture multi-way dependencies
3D tensor of outbreak terms +

locations evolving over time



Online Tensor Analysis

New
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Sun, J., Faloutsos, C., and Kolda, T., KDD 2006.




Translating to a small world!

* Which regions of the
molecule are moving
together?

* At which time-points are
the spatio-temporal
patterns of motions

changing?
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Data - Insights = Discovery:

Time-points where spatio-temporal correlations change
can be used to control simulations
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Key Contributions

An online tool for data mining:

1. Anomaly detection:
— time points where social media patterns change

— Can be used to track disease outbreak

2. Spatio-temporal pattern discovery:

— cluster geographical regions based on media patterns

3. Data summarization



odor dimensions

Part 2: Discovering inherent statistical structure in
big data

* Organizing high dimensional spaces

* Odor perception



Motivation: Towards machine olfaction...

* Odor perception:

— What is the perceptual space of the
human olfactome?

* 31 million molecules from
Pubchem!!

— Big Data: How to organize this
space?
* We don’t have this organization:
— Can we build this from data?

— Statistical characteristics from both
psychophysics & chemical spaces




Using semi-supervised learning to “odor” label
the Pubchem

* Label small portion of the data p S T ey
with odor percepts o e )
. . . AN
— Derive physio-chemical _ | -
features from labeled data £
* Graph-kernel approaches to i‘ijaiff
quickly compare compounds - e @ |
L
* Propagate labels on successively to o
larger data sets (flavornet, 2
superscent) ' e o~

e Test / Validate / Refine

Castro, J.B., Ramanathan, A., Chennubhotla, C.S. (2012) PLoS One (in preparation)



Building a perceptual model of odors on Atlas of
Odor Chemical Percepts (AOBCP)

* 144 odors; ~150 odor descriptors

* Use non-negative matrix
factorization for dimensionality
reduction

e Rigorous cross validation
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Data = Insights = Discovery

Odors with similar perception share unique physio-chemical
signatures

CLUSTER 3 (FRUITY, BANANA)

* Fruits and sewer have p1 “fgb et Qf@&?%
distinct chemical features:
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* |dentified automatically
from over 1600 physio-
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Key Contributions & Future Work

A machine learning framework to relate chemicals to their odor
percepts:

* Discovery of underlying statistical structure within large-scale
datasets

— how do people perceive odors?

— linking “odor perception” to “chemical signatures”

* Organizing odors into a perceptual frame of reference:
Olfactome: using novel machine learning tools

— integration with psycho-physics experiments

— expanding the compounds to include a larger chemical repertoire



Part 3: Moving to the cloud...
* Organizing high dimensional spaces
* Auto-regressive models

* Bio-medical applications



Motivation: Automate detection of patterns
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* Temporal models:

— patterns in disease spread

 Generative models:

— predicting how disease may
spread




Bio-surveillance and the Cloud

Bio-surveillance data
e is BIG and NOISY

* requires repetitive analysis in chunks

‘

* modeling involves linear algebra and

statistics ‘i ﬁ




Example: Biological Visualization & Data Analytics for
Disease Diagnostics

Data Transfer and Integration

+ Ciliary motion data per patient:
order of gigabytes

+ Large-scale, longitudinal study
will generate terabytes of data

» Patient data collected so far in
Dr. Lo’s lab: ~200 controls and
~200 diseased
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Ciliary Motions Drug-Discovery

* Image/Video data in 2D, 3D and 4D

+ 20-100 drugs/biological agents at
multiple concentrations, for multiple
time points in live cells.

* For each of the 2,000-200,000
treatments, profile 1,000-10,000

cells
ﬁ- Data size: Tera to Petabytes

Visualization and Analysis

Beat Rates Visualization
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Computational steps in the
quantitative analysis of biomedical
data
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Collaborative Interpretation
and Verification

Interpret
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Researcher Clinician

Impact: high-throughput research
pursuits, time-critical clinical
applications, biomedical science cloud

Dose Range Beat Rate
Finding (Hz)
Chloroquine 2.135
Amiodarone 0.512
Menadione 0.995
Vehicle Control 2.25

Data@ University of
Pittsburgh:
* Dr. Cecilia Lo’s lab
* Drug-discovery
Institute
Compute Cloud:
Qloud@CMU-Qatar,
Dr. Majd Sakr




Summary

* An overview of a computational infrastructure that
implements scalable machine learning algorithms to:

— discover inherent structure from various sources of bio-
surveillance data

— provide near real-time feedback for end-users on emerging
patterns
* Challenges include:
— Seamlessly fusing multiple data sources

— Standards across the globe differ!
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Thank You !!!

Questions/ Comments: ramanathana@ornl.gov
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