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Investigators/analysts need “confidence” metrics to enable
justified and rapid decision making.
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Proudly Operated by Battelle Since 19

Investigators/analysts need “confidence” metrics to enable
justified and rapid decision making.
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Pacific Northwest

Integration Problem

How do we tie together the “experimental”
and “intelligence” signatures to help the
analyst/investigator?
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Pacific Northwest

Integration Problem

How do we tie together the “experimental”
and “intelligence” signatures to help the
analyst/investigator?

» Challenge

B Researchis
compa rtmentalized Experimental Sample Intelligence

into domains 5‘9_??‘;;?? — W*}u (
il L 5 T 1 |
H M M [~ g JR L jO ‘
B Statistical confidence S Walipie -_

metrics from multiple = p :
sources of evidence — Kﬁﬁmsﬁy
have not been well
defined for ~
bioforensics/
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Bayesian Statistics Naturally fits forensic and

surveillance type problems
Outcome is conditionally related to the sources of evidence
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Bayesian Statistics Naturally fits forensic and

surveillance type problems
Outcome is conditionally related to the sources of evidence

» Bayes theorem

) Likelihood Prior
Posterior

P(E|O)P(O)

P(O|E) = o6
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Bayesian Statistics Naturally fits forensic and

surveillance type problems
Outcome is conditionally related to the sources of evidence

» Bayes theorem

) Likelihood Prior
Posterior

P(E|O)P(O)
P(E)

P(O|E)=

Probability that a person
become sick with the flu
given (O) their age (E)
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Approach — Bayesian networks e

Bayesian Statistics Naturally fits forensic and

surveillance type problems
Outcome is conditionally related to the sources of evidence

» Bayes theorem » Bayes network

. Likelihood Prior m Conditional relationships
Posterior

{
P( IE)=PEF|)C()|;)P(O) :> ()

Probability that a person P(O|E,G)<P(E|G,0)P(G|O)P(O)

become sick with the flu
given (O) their age (E) Probability that a person become sick with
the flu given (O) their age (E) and gender

August 28, 2012 (G)



Approach — Bayesian networks e

» Allows

M Integration of
heterogeneous data types 0

B Multiple complex
relationships 0
B Incomplete information G
» Yields

B Probabilistic measure of
the outcome P(C|AB)P(B| A)P(A)

B Probabilistic Interrogation
of intermediate nodes
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Microorganism-based forensics do not offer investigators
“confidence” metrics associated with the sample to gain
insight into individuals or places with information pertinent
to the investigation.
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Approach — Existing Experimentally P SR o

deriving network (culture media recipe)

Prior work (Jarman et al.,
2008) demonstrated that
using disparate analytical
measurements (D, D,,, D, D))
of Bacillus spores could yield
a predictive model of
production environment (R)

~_=

P(R|D;,D,,, D¢, D))

Computed using GeNIle tool for visualization

August 28, 2012
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Approach — Existing Experimentally "ol e

deriving network (culture media recipe)
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deriving network (culture mediarecipe)
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Proudly Operated by Battelle Since 1965

deriving network (culture media recipe)
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Proudly Operated by Battelle Since 1965

deriving network (culture media recipe)
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Integration Problem — Building the = ™ies.

Bayesian network

How can you identify institutions that have
experience with the kind of culturing practice
pointed to by the experimental evidence?

RESULTS

Ranked list of candidate
Institutions where sample
could have been grown

P(Institution, |
Experimental Data)

1 23% @ Institution A
2| 22% @ Institution B
'3 15% @ Institution C
é 8% @ Institution D
5| -
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Intelligence
Experimental
Signatures
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Integration Problem — Building the

Pacific Northwest

Bayesian network

How can you identify institutions
that have experience with the kind
of culturing practice pointed to by
the experimental evidence?

Experimental Data Bayes Net

S— —

August 28, 2012

P(1;1De, D))

Prediction
of culturing

recipe from
institution

is not
feasible.




Integration Problem — Building the ™"t

Bayesian network

How can you identify institutions
that have experience with the kind
of culturing practice pointed to by
the experimental evidence?

Experimental Data Bayes Net

S— —

August 28, 2012

P(1;1De, D))

Institutions
tie to
documents

Challenge to

predict
recipes
directly from
document



Integration Problem — Building the

Pacific Northwest

Bayesian network

How can you identify
that have experience

Institutions
with the kind  |P(l;|Dg, D))

of culturing practice pointed to by

the experimental evic

Experimental Data Bayes Net

ence?

Use
automated
text

| scanning
(key words)

@ B For demonstration we focus on

S— —

August 28, 2012

using published journal articles
in the public domain.
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Integration Problem — Building the

Bayesian network

How can you identify institutions
that have experience with the kind  |P(l;|Dg, D))
of culturing practice pointed to by

the experimental evidence?

- 1@ i

ZZZZZP(D | AP(Dg, D, |S)P(A|R)P(S|R)H[P(R|T<q>)P(T<q>|D)}:(D||)p(|)
PU; 1P D)= ZZZZZZP(D | A)P(D;.D, |s)p(A|R)P(S|R)H1P(R|T“”)P(r<‘”|D)P(D|l)P(I)

N \ y

Experimental Data Bayes Netj B For demonstration we focus on
using published journal articles

in the public domain.
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Open-source text signatures g
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Hand curated | 7 @ 144

documents show a TS Q

discriminatory pattern i Q o

between culture

medium recipes @
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Val I d atl O n Pacific Northwest
Proudly Operated by Battelle Since 1965

INFORMATION EVALUATION
» 144 total documents » Cross-validation
B 52 documents hand (bootstrapping): 52
curated documents
B 92 additional documents  » Area under Receiver
» 165 institutions Operating Characteristic

curve (AUC)

Random Classifier will given an AUC of 0.5

Perfect Classifier will give an AUC of 1.0

August 28, 2012
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- o = Pacific Northwes
AUC Statistically Higher than
Random
_ -| —_ |
p-value < 1e-10 Pre d » Issues with
nal H,*” l Validation
E i B Presumably
gl | many “false”
= are “true”
% aal M Limited to the
= culture
medias of the
02y — — —Random Classifier (AUC=0.5) | | hand curation
Bayesian Metwork (AUC = 0.73)

0 0.2 0.4 0.6 0.5 1

False Positive Hate
Bayesian Random
0.71+£0.17 0.48+0.124
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Pacific Northwest

Advantages of the Bayesian

Proudly Operated by Battelle Since 1965

Network Approach

» More experimental and/or soft data streams can be added

» Modify the final probability (e.g., foreign vs. domestic, individual
researchers)

» Automated approach, any number of documents (institutions,
people) can be evaluated

» Yields a easy to interpret confidence metric

Experimental Signature
(Information on Sample) < RESU LTS
. ~ Ranked list of candidate

Institutions where sample
could have been grown

[

P(Institution, |
Experimental Data)
1. 23% @ Institution A
22% @ Institution B

15% @ Institution C
8% @ Institution D




Looking Forward: Bioforensics RO

and Biosurvelllance

» Expand to include
more “who” and
“‘where”

B Means more nodes,
types of information
(e.g., social media)

» Dynamic Bayesian

networks %' @ﬁz eoeo Wi' P

Non-Standard

M Evaluate a “threat” over
time " E ' E,
Experimental

'5';;:_ Fl
I e vag (R

.................
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Adding non-traditional “soft” data ™"

to the existing network

How can we link In some new source of soft data,
such as social media?
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Adding non-traditional “soft” data ™™~

to the existing network

How can we link In some new source of soft data,
such as social media?

Probably doesn’t
make sense to
link through
culture recipe
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Adding non-traditional “soft” data ™™~

to the existing network

How can we link In some new source of soft data,
such as social media?

Probably doesn’t
make sense to
— _ link through
We need domain culture recipe
experts and

statisticians working

August 28, 2012



Adding non-traditional “soft” data ™"

to the existing network

One approach would be to add a "warning” node

» Compute the probability that there is a threat (W) given
the “individual” and data source (D)
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Adding non-traditional “soft” data ™"

to the existing network

One approach would be to add a "warning” node

» Compute the probability that there is a threat (W) given
the “individual” and data source (D)

PW T, Dgy)

v
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Adding non-traditional “soft” data ™"

to the existing network

One approach would be to add a "warning” node

» Compute the probability that there is a threat (W) given
the “individual” and data source (D)

» Link individuals/institutions to social media

PW T, Dgy)

August 28, 2012



Adding non-traditional “soft” data ™"

to the existing network

> > P(De, D, [1) PW]I,Dy,)P(Dg, [1)P(I)
P(Ij ‘ DE’ DI ’ DSM) — X3P PWIILDy)POs [1P()

...... W

PW T, Dgy)
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Adding a dynamic component e

Proudly Operated by Battelle Since 1965

Generally, integration of multiple ‘orthogonal’
streams of data improves predictive capability

Evidence

Nodes Internal
Nodes

Detection

Enters at rate c>

Enters at rate I>
Enters at rate (>

August 28, 2012

P(Alert |E, ,E,,E,)

|i> P(No Alert |E, ,E,,E;)

Webb-Robertson et al., (2009) PSB



Adding a dynamic component e

Generally, integration of multiple ‘orthogonal’
streams of data improves predictive capability

» Automated nature of the network allows continual update
of the probability at rate of the fastest source of data.

Evidence

Nodes Internal
Nodes

Enters at rate a Detection

P(Alert |E, ,E,,E,)

Enters at rate I> G ‘ ‘ $ P(NO Alert | El J E2 J E3)
Enters at rate (>

August 28, 2012

Webb-Robertson et al., (2009) PSB



Adding a dynamic component e
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Integration can identify an “alert” where
individual data streams may not
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Adding a dynamic component e

Proudly Operated by Battelle Since 1965

Integration can identify an “alert” where
individual data streams may not

F‘(dklE1 ,E2,E3,E4) - Paoserior Probahility

—&—F5
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Adding a dynamic component

Integration can identify an “alert” where
individual data streams may not

03 I T T T I T T I T I T I T T T T I T I T T T T I T I T T

riar Prohability

Pose
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Adding a dynamic component RO

Integration can identify an “alert” where
individual data streams may not

rior Prohability
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