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Integration Problem 
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Challenge 

Research is 
compartmentalized 
into domains  

Statistical confidence 
metrics from multiple 
sources of evidence 
have not been well 
defined for 
bioforensics/ 
biosurveillance 

 

How do we tie together the “experimental” 

and “intelligence” signatures to help the 

analyst/investigator? 
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Bayesian Statistics Naturally fits forensic and 

surveillance type problems 
Outcome is conditionally related to the sources of evidence 

Bayes theorem 
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Bayes network 

Conditional relationships 
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Allows 
Integration of 
heterogeneous data types 

Multiple complex 
relationships 

Incomplete information 

Yields 
Probabilistic measure of 
the outcome 

Probabilistic Interrogation 
of intermediate nodes 
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Microbial Forensics 
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Microorganism-based forensics do not offer investigators 

“confidence” metrics associated with the sample to gain 

insight into individuals or places with information pertinent 

to the investigation. 
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Approach – Existing Experimentally 

deriving network (culture media recipe) 
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Prior work (Jarman et al., 
2008) demonstrated that 
using disparate analytical 
measurements (DS, DM, DE, DI) 
of Bacillus spores could yield 
a predictive model of 
production environment (R) 
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Computed using GeNIe tool for visualization 

Jarman et al., (2008) AEM 
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of all 
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Marginal 

Probabilities 

of growth 

components 
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Prediction 
of culturing 
recipe from 
institution 
is not 
feasible.  
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Experimental Data Bayes Net 

Institutions 
tie to 
documents 
 
Challenge to 
predict 
recipes 
directly from 
document 

I?  ?   D

How can you identify institutions 
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the experimental evidence? 
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Open-source text signatures 

Hand curated 

documents show a 

discriminatory pattern 

between culture 

medium recipes 
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Validation 

INFORMATION EVALUATION 
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144 total documents 

52 documents hand 

curated 

92 additional documents 

165 institutions 

Cross-validation 

(bootstrapping): 52 

documents 

Area under Receiver 

Operating Characteristic 

curve (AUC) 

 

Random Classifier will given an AUC of 0.5 
 
Perfect Classifier will give an AUC of 1.0 



AUC Statistically Higher than 

Random 
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Bayesian 

     0.71±0.17                    

Random 

     0.48±0.124  

p-value < 1e-10 Issues with 

Validation 

Presumably 

many “false” 

are “true” 

Limited to the 

culture 

medias of the 

hand curation 

 

 



Advantages of the Bayesian 

Network Approach 

More experimental and/or soft data streams can be added 

Modify the final probability (e.g., foreign vs. domestic, individual 

researchers) 

Automated approach, any number of documents (institutions, 

people) can be evaluated 
 

Yields a easy to interpret confidence metric 
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Looking Forward: Bioforensics 

and Biosurveillance 

Expand to include 

more “who” and 

“where” 

Means more nodes, 

types of information 

(e.g., social media)  

Dynamic Bayesian 

networks 

Evaluate a “threat” over 

time 
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How can we link in some new source of soft data, 

such as social media? 
Probably doesn’t 
make sense to 
link through 
culture recipe We need domain 

experts and 
statisticians working 
together 



Adding non-traditional “soft” data 

to the existing network 

August 28, 2012 

ID

A

S

R

1T

2T

34T

I

ED

D

SMD

One approach would be to add a “warning” node 

 

WW

Compute the probability that there is a threat (W) given 
the “individual” and data source (DSM) 

 



Adding non-traditional “soft” data 

to the existing network 

August 28, 2012 

ID

A

S

R

1T

2T

34T

I

ED

D

SMD

One approach would be to add a “warning” node 

 

WW

Compute the probability that there is a threat (W) given 
the “individual” and data source (DSM) 

 

),|( SMDIWP



Adding non-traditional “soft” data 

to the existing network 

August 28, 2012 

ID

A

S

R

1T

2T

34T

I

ED

D

SMD

One approach would be to add a “warning” node 

 

WW

Compute the probability that there is a threat (W) given 
the “individual” and data source (DSM) 

Link individuals/institutions to social media 
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Adding a dynamic component 
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Webb-Robertson et al., (2009) PSB 

Automated nature of the network allows continual update 

of the probability at rate of the fastest source of data. 

Generally, integration of multiple ‘orthogonal’ 
streams of data improves predictive capability 
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