
N954 Expeditionary Preposition/Connector Branch

Surface Connector Outlook

CAPT Sean Geaney USN September 2012

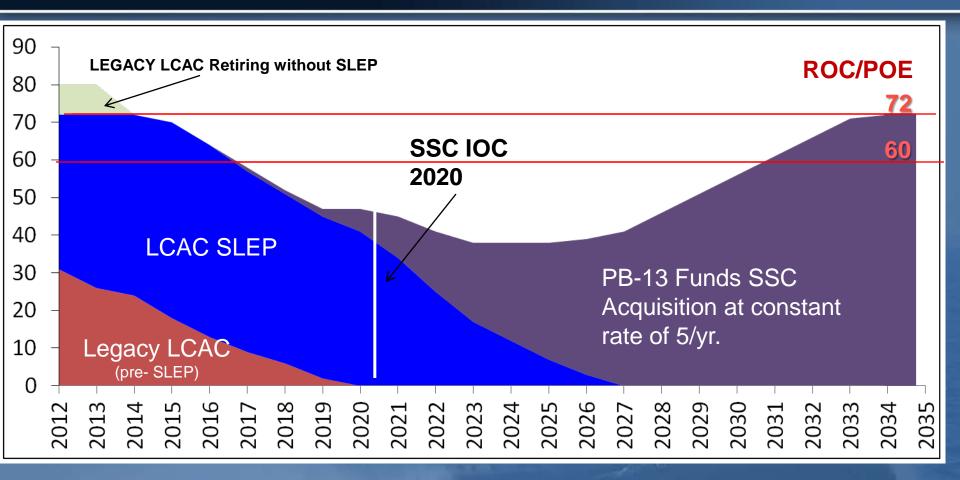
Connectors

LCAC and LCAC(SLEP)

SSC/LCAC-100

Landing Craft Utility (LCU)

Surface Connector (X) Replacement (LCU Recapitalization)

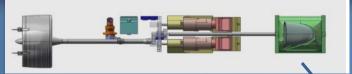

LCAC

- Landing Craft Air Cushion (LCAC)
 - High speed ship-to-shore delivery of heavy equipment and personnel to trafficable terrain beyond surf zone.
 - 81 in inventory. ROC /POE is 72 craft to support 60 deployable.
 - Entered Service 1985 with 20 year service life.
- LCAC Service Life Extension Program (SLEP)
 - Initiated FY2000.
 - Extends LCAC service life of 72 craft from from 20 to 30 years.
 - 39 of 72 complete; 7 in progress; 4 awaiting induction; 22 remaining (last SLEP delivers FY20).
 - PB-13 funds 4 SLEP annually FY 14-18.
 - Only 2 SLEP in FY13 after FMB action to clear contracting delays
 - First SLEP craft begin to reach 30 years of service in 2015

LCAC (SLEP) Overview

	FY01 - FY04	FY05	FY06	FY07	FY08	FY09	FY10	FY11	FY12	FY13	FY14	FY15	FY16	FY17	FY18
Delivered	8, 9, 10, 21	37 42	29	31	3 0	59 62	63			Key:					
Deli	2, 4; 7, 25 26, 28, 39	43	54	48	53					ACU 4		AC	U 5	J aint	
40	40, 44	45 47	68 34	69 36	41	1 79				Secon			•		
7	pe					ECD Sep 12	ECD Sep 12	27	1	(Non-Sta SLEP) Re			-	naintain	and [–]
ract	Inducted						74	80		SEEF	etti nig a	it 20 yea	ai 5.		
Cont	_						ECD Sep12	75	73						
Under Contract	ted				-				82			-	116		
J 4	Not Inducted							E.	55		.		M		
					1		73		60	Laula_	1 81	58	65	57	
Planned							The state of			88 1 89		64	76	52	
26											83			1 66	
20 Never	-		-	-	-						65	65	87		
SLEP 8	16	.		ile laliz				20	35	\rightarrow	→X	Proje	cted P	OM-1 4	Cut

LCAC/SSC Capability GAP PB-13


<u>Assumes</u> LCAC retire at 30 years Need for mitigation understood, but not funded in PB13

Ship to Shore Connector (LCAC-100)

- Replacement for LCAC(SLEP); IOC in 2020.
- Evolutionary design leveraging 20+ years of LCAC operations and maintenance.
 - 20% more power than LCAC to carry heavier payload from sea basing ranges (74 STons) and achieve hump speed in hot weather at full load.
 - Addresses major maintenance drivers in LCAC to improve reliability
- Achieved Milestone B June 2012
- Detailed Design and Construction (DD&C) contract awarded July 2012
 - Awarded first craft (Test and Training Craft) with options for first eight fleet assets.
- SSC/LCAC-100 does not arrive in time to address the LCAC gap.
- Actions to mitigate the gap were not funded in PB-13.
 - Options remain in POM-14 and POM-15 to extend LCAC (SLEP) beyond 30 years in service.

SSC/LCAC-100

Increased lift + Lower Fuel Consumption + Reduced Maintenance

Simpler & More Efficient Drive train/ One Gearbox per Side

More Powerful Engines w/ Greater Fuel Efficiency & Digital FADEC

Pilot/Co-Pilot Dual Controls Smaller Crew (5) + new C4N suite

Extensive composites

Sustained speed>35 kts NATO Sea State 3-4 @ 100degF w/74 STON load

Main engine geared electrical generators + APU & 60Hz distribution bus

Gear driven bowthrusters

Aluminum (5083) Better corrosion resistance and Immersion grade wet deck coating system

The Ship to Shore Connector (SSC/LCAC-100) Program will ensure the Navy continues to field a high-speed assault craft to complement USMC vertical assault aircraft and amphibious vehicles for the next 30 years.

Landing Craft Utility

The Other Connector

Landing Craft Utility (LCU)

- 32 LCU-1600 craft average 40+ years of service
 - Heavy lift, range/persistence, flexibility, independent ops
 - Block system obsolescence and increasing maintenance costs
 - 4 year dry docking \$1.8M in FY02;
 - Mean cost FY07-11 >\$3M per overhaul
 - Declining reliability
 - LCU-1644 Hull repair in 6th Fleet due to corrosion of prior repair
 - Recent ROH delays due to rudder, rudder post seals, propellers and propeller shafting non availability.
 - Cargo capacity de-rated due to age
 - 195 STONS (1960s)
 - <144 STONs (2012) (-17 STONS is attributable to addition of RO unit and 4K gal potable water storage remainder related to advanced age

LCU (Recapitalization)

Working Title: Surface Connector (X) Replacement (SC(X) R)

- <u>Objective</u>: Restore 30 year service life to displacement utility craft <u>at</u> <u>current capability.</u>
 - Initial Capabilities Document (ICD) approaching R3B review (Navy Gate 1)
- <u>Gap</u>: Ship-to-shore self mobility for expeditionary forces in lower to middle ROMO (NEO, HA/DR, TSC, AFOE)
 - Endurance/range (10 days/1200 nm), heavy bulk lift & crane loading, fuel economy, riverine ops; a comparatively less overt platform.
- Recent Study: LCU in Support of Global Security Study (N81):
 - LCU Complementary to LCAC in areas where distinct differences exist in capability
 - SSC/LCAC answers MCO high speed over beach assault need
 - Leaves gap in routine engagement, presence, (HA/DR) and sustainment of forces from sea basing that LCU fulfills.
 - Pursuit of high speed LCU replacement could be seen as redundant, vice complementary, in capability
- Affordability and TOC reduction are driving considerations in SC (X) R
 - Complexity of design directly associated with higher acquisition cost and TOC
 - Argues against increased speed, payload or adoption of developmental technologies.

LCU-1600 Class characterized by rugged construction, high operational reliability, economical operation, simplicity of maintenance, large capacity and extended range.

Preliminary Recapitalization Alternatives

 Ultra Heavy Assault Connector (UHAC); An ONR Sponsored Capability Demo Aluminum with hybrid diesel and gas turbine propulsion (CODAG). ½ scale test in cooperation with Singapore. Crawls over the water/beach @ 20 kts; reaches beyond surf zone like LCAC. Original design lacked habitability for endurance encroachment on troop berthing.
 Landing Catamaran (L-CAT) Developed for French Navy Mistral Class Ships Aluminum hulled catamaran with rising cargo deck (uses four hydraulic lifts). Sustains 20(+) kts in catamaran operation; but must raise cargo deck. Has overhead constraints; uncertain if supports M1A1 with mine plow (74STONs). Footprint approximates LCAC; concern for well deck point loading from catamaran. ~1000 nm range, but no crew habitability in French Navy version—possible encroachment on troop berthing spaces.
 Partial Air Cushion Supported Catamaran (PACSCAT) Originated as possilbe U.K. Replacement for LCU Mk 10; developed by QinetiQ. Aluminum hull sized between LCU-1600 and LCM-8. Can't carry M1A1 with mine plow and lacks habitability and endurance for extended transits—encroachment on troop berthing spaces. Accessibility to two massive diesels in wing walls driving 20 ⁺ Kts raises concerns; as does waterjet impeller erosion in surf-zone (Maintainability/Reliability).
 Landing Craft Utility (LCU) 1600 Class Service Life Extension Program (SLEP), <u>OR</u> Modified Repeat Introduces no major technological enhancements or complexity. Preserves current capability, steel construction, durability. Reuses current infrastructure: manning, training, basing (lower TOC) Renews a 30 year service life while addressing obsolescence and configuration control issues.

Take Aways

• The Connector Fleet continues to age--*Mitigation awaits POM-14/15*

- Average LCAC is 20 years old; LCUs average 42 years in service
- Need to maintain LCAC in service while funding SSC acquisition
- Need LCAC until SSC FOC (2028 32)
 - Average age will exceed 35+ years
 - SSC/LCAC-100 now under contract
- LCUs will remain in service for the foreseeable future
 - Escalating sustainment costs, systemic obsolescence of systems and replacement parts, derating of cargo capacity.
 - 30 of 32 craft have 42-52 years in service (two 25 year craft transferred from Reserve Component).
 - SC (X) R Initial Capabilities Document in routing for Gate 1
 - AOA anticipated in FY-13
- Readiness of both LCAC and LCU is a function of age, usage and past life cycle program cuts.

