Wafer Level Packaging for High-Aspect Ratio MEMS

2012 NDIA Fuze Conference May 16, 2012

Presenter: Kevin Cochran NSWC Indian Head Div. 301-744-1163 kevin.r.cochran@navy.mil

Project Description

- Joint Fuze Technology Program (JFTP) sponsored project
- Objective
 - Develop wafer level packaging techniques that are applicable to highaspect ratio MEMS devices
 - Wafer bonding for hermetic package sealing
 - Through vias for electrical connection to sealed devices
- Impact
 - Improved reliability and safety of MEMS components
 - S&A chip
 - Rocket motor igniters
 - Environmental sensors
 - Increased throughput and yield of the MEMS manufacturing process
 - Lower cost components

- Compatible with existing device designs and fabrication sequence
- Bond strength
 - Survive g-loading up to 50 Kg's
 - Die shear strength > 15 MPa
- Hermeticity
 - > 10 year storage
 - Leak rate < 10⁻¹¹ atm-cc/sec
- Provide electrical path to interior of sealed package
- Devices to be packaged
 - Current focus is on inertial switches
 - Extension to packages with energetic materials
 - Wafer bonding after energetic materials are deposited
 - Requires low temperature bonding or localized heating

Background: Wafer Bonding

- A device and cap wafer are precisely aligned and bonded under temperature and pressure in a controlled atmosphere
- Allows the simultaneous sealing of 100s to 1,000s of MEMS devices
- Wafer bonding techniques
 - Anodic: silicon to glass bonding with a large applied electric field
 - Solder: intermediate solder layer bonds metallic pads on each wafer
 - Eutectic: bonding with an intermediate material that forms a eutectic alloy with silicon
 - Fusion: direct silicon to silicon bonding

Background: Through Vias

- Provide an electrical path to the MEMS devices while maintaining environmental isolation
- Through via techniques
 - Sealed wire bonds
 - Trench etch / refill
 - Trench is etched through the wafer
 - Can be coated with a dielectric material (SiO₂ or nitride)
 - Refill with a conductive material
 - 눶 Metal
 - Electroplating
 - Conductive paste
 - Polysilicon
 - Buried traces under bond ring

Excellence for the Warfighter

MEMS Device Design

- G-Switch
 - Spring supported mass that displaces under acceleration
 - Retard Sensor
 - Design activation level: 1.5 5 g's
 - Unidirectional motion
 - Impact Sensor
 - Design activation level: 60 120 g's
 - Unidirectional or multidirectional motion
- Restrict out-of-plane motion without inducing stiction during bonding
- Devices designed in conjunction with JFTP project "MEMS Retard and Impact Sensors"

Fabrication: Solder Bonding

- Device wafer fabrication
 - Deep reactive ion etching (DRIE) based sequence
 - Silicon on Insulator (SOI) substrate
 - 1. Through via formation
 - 2. Frontside / backside metallization
 - 3. Frontside / backside DRIE
 - 4. Vapor HF release
- Cap wafer fabrication
 - Silicon or glass substrate
 - 1. Frontside metallization (AuSn solder) Backside metallization
 - 2. Frontside etch

Fabrication: Anodic Bonding

- Device wafer fabrication
 - Deep reactive ion etching (DRIE) based sequence
 - SOI substrate
 - 1. Through via formation
 - 2. Frontside DRIE
 - 3. Frontside / backside metallization
 - 4. Frontside / backside DRIE
 - 5. Vapor HF release
- Cap wafer fabrication
 - Silicon or glass substrate
 - 1. Backside metallization
 - 2. Frontside glass deposition (silicon substrate only)
 - 3. Frontside etch

Fabrication: Through Vias

- "Via first" approach
 - Vias are created at the beginning of the process flow
 - MEMS devices created later in the process flow
- DRIE through handle layer to create vias that connect to backside of device layer
 - Vias isolated by high resistivity handle silicon and device layer trenches
- Fill vias with metal
 - Conductive paste (short-term solution)
 - Requires bake
 - Susceptible to voids
 - Electroplating (long-term solution)
 - High aspect ratio vias cause the metal to "pinch" at the top of the via
 - JHUAPL is developing process to eliminate pinching

Fabricated Through Vias

- Via metal fill
 - Conductive paste (Ag coated Cu powder)
 - Via fill cured with high temp. bake in a vacuum environment
 - Lapping to remove overfill
- Initial wafer problems
 - Single paste fill and bake steps
 - Caused voids in vias and wafer warpage
 - Solved by performing multiple paste fill and bake steps
- Electrical resistance
 - Measured < 1 Ohm from top of via to top of device layer silicon

Warped wafer due to paste shrinkage during cure

Filled vias post-cure before lapping

Completed wafer with lapped vias

Commercial Through Vias

- Baseline to compare in-house designs
- Wafer description
 - Ceramic wafers with laser drilled through vias
 - Vias filled with Au particles suspended in thinner
 - Via fill cured with high temp. bake
- Electrical resistance
 - Measured .1 Ohm from frontside to backside of via
- AuSn solder deposited for bonding with device wafer

Ceramic Wafers with Through Vias

Assembly & Evaluation Process

DoD ENERGETICS CENTER Excellence for the Warfighter

Bonding Process

Hermeticity Evaluation

- Diaphragm deflection observed postbonding
- Optical profilometry
 - Packages placed in sealed chamber that is pressurized with a gas
 - Diaphragm deflects with pressure differential on either side of cavity
- Helium (He) utilized to detect leaks more quickly
 - Actual leak rate in air calculated
 - Min. detectable leak rate:

10⁻¹² - 10⁻¹³ atm-cc/sec

- Fixture designed and manufactured
- Anodic and solder samples evaluated
 - Total test time of 40-60 hours
 - Deflections measurements performed every 5-20 hours

Hermeticity Evaluation

- General correlation with bond parameters
 - Higher temperature, bond pressure, voltage results in samples with better hermetic seal
- Chips from a bonded sample will all generally exhibit a good bond (acceptable leak rate) or all exhibit gross leaks / no seal

Bond Strength Evaluation

- Visual inspection indicates uniform bonds
 - Dark anodic bond lines
 - Solder squeeze out from bond lines
 - Concentric interference fringes
- Some bond inconsistencies observed in completed packages
 - Due to non-uniform pressure application and chip contamination
- Die shear evaluation
 - Stress induced parallel to the plane of the bond until failure occurs

Method	Average Bond Strength	Bond Characteristics	Ideal Bond Parameters
Anodic	35 MPa	 Chips fracture before bond Material transfer between chips 	350 °C 400 V
Solder	28 MPa	 AuSn solder transfer to device chip bond areas 	320 °C 3000 N

Project Summary

- Developing wafer level packaging techniques that are applicable to high-aspect ratio MEMS devices
 - AuSn solder and anodic bonding for hermetic package sealing
 - Electrical through vias for electrical connection to sealed devices
- Packaging of a MEMS inertial switch for retard and impact sensing
- Successfully assembled packages with required bond strength and hermeticity
- Developed technique for through via formation
- Next step: fully evaluate bonded inertial sensor performance
- The completed work will:
 - Improve the manufacturability and reliability of MEMS components in the fuze, including sensors and/or the MEMS S&A chip
 - Lead to higher process throughput and lower cost components

