

10 10 10 10 10 10 10 10 10

THE POWER OF RELIABILITY 56th NDIA Fuze Conference May 14-16, 2012

Advances in Thin-Film Thermal Battery Processes: Performance and Cost Benefits J. Reinig

Thin-Film Technology Development Overview

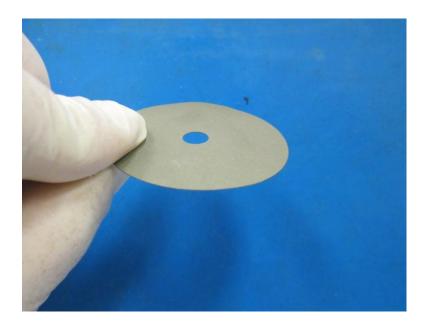
Objective: Develop a technology which can capture the following characteristics over traditional Thermal Battery technology

Manufacturing Benefits

- Easier to Handle Thin Components
- Reduced Production Time/Cost

Performance Benefits

- Shorter Rise Time
- Increased Battery Power Capability
- Reduced Battery Weight/Volume



Thin–Film Technology Development Ease of Handling

Ease of handling is increased with the addition of the binder

- Easier Storage Solutions
- Reduced Stacking Time
- Reduction in FOD

Thin–Film Technology Development Reduced Production Time

High-Speed processing techniques reduce production/cost.

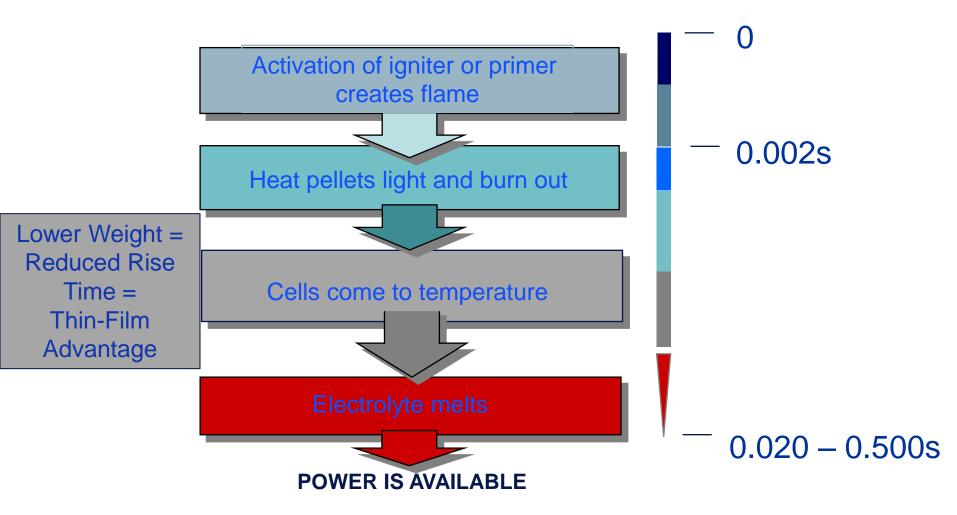
- Thin-Film component production is a magnitude higher than pellet production.
 - Increased surge capability
- Automation can more easily be integrated.
 - SPC and storage

Thin–Film Technology Development Improved Production Rate

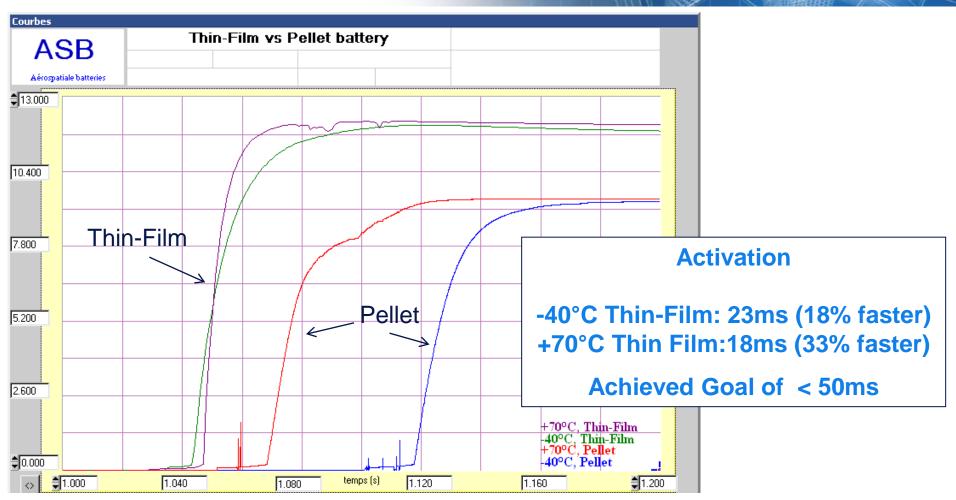
Coating rate of thin-film parts is a magnitude higher than pressing pellets

- Lower Production Cost
- Better Surge Capability

Small Roll-to-Roll Coating Equipment


Pellet Presses

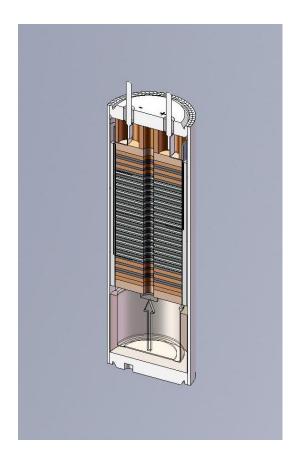
Thin–Film Technology Development Improved Rise Time


Activation time determined by a multi-step process

Thin–Film Technology Development Improved Rise Time

Note: Time=0 differs from test to test and is accounted for in activation time calculation

Thin–Film Technology Development Fast Rise Time Battery Development

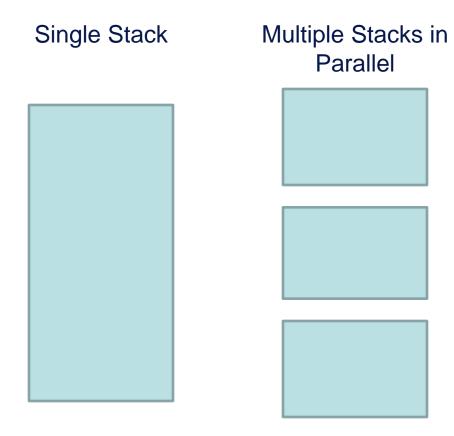


Battery Characteristics

DesignTwo Stacks of 5 Cells in ParallelSize0.625" Dia. X 2.0"Length(Achieved 0.625" Dia X 1.4" Length)Load0.75AStart Time50 ms(Achieved 23ms tested @ -40°C)Temp. Range-40°C to +70°C

NOTE:

- Battery is primer fired for lab testing
- Battery if inertially fired for Air Gun Testing at ARDEC
- Inertial starter effort done by Omnitek



Thin–Film Technology Development Increased Battery Power Capability

Battery Power Can be Increased/Optimized by introducing parallel stacks

- Reduction in battery impedance by introducing more equivalent cell area which helps voltage regulation in high current applications
- Length/weight increased only slightly for additional thin-film stacks
- Length/weight increased dramatically for traditional pressed powder pellet stack because of pellet manufacturability

Thin–Film Technology Development

Reduced battery weight and volume is beneficial for tighttolerance / high-performance applications

- Traditional pellet battery designs are sometimes limited by manufacturability of pellets
 - Pellets are delicate if made too thin
 - Critical thickness based on pellet diameter
 - Result is batteries designed with excess capacity
- Thin-Film battery designs can use optimized cell thicknesses/weights because thinner cells can be easily manufactured
 - Critical thickness is based on the thin-film processing
 - Critical thickness is approached for thicker coatings
 - Lowered cell thickness/weight = lower battery height/weight
 - Reduction in materials used in batteries = lower material cost

Thin–Film Technology Development

Current Minimum Cell Thickness Comparison

	Small Cell Diameter			Med	dium Cell Diameter		
		Pellet Th. (in.)	Thin Film Th. (in.)		Pellet Th. (in.)	Thin Film Th. (in.)	
SS F	oil	0.001 (x 2)	0.001 (x 2)	SS Foil	0.003	0.002 (x 2)	
Anoc	de	0.007	0.003	Anode	0.014	0.003	
Elect	trolyte	0.008	0.006	Electrolyte	0.014	0.006	
Cathode		0.004	0.003	Cathode	0.014	0.003	
Heat		0.010	0.009	Heat	0.016	0.011	
To Cell	otal	0.031 ← 2	0.023 5% →	Total Cell Thickness Savings	0.061	0.027 55% →	

Thin–Film Technology Development

Doctor Blade With Micrometer Setting for Hand Coating

Anode

Cathode

Heat

<u>Goals Met</u> – Fast Start, Smaller, Robust Battery

- •Start Time (Preconditioned at -40°C)
 - Achieved 28ms for Pressed Pellet Battery (SN009)
 - 23ms for Thin Film Battery With Pellet Heat (SN022)
- •Layer Thickness Reduced compared to Pellet by ~25%
- •Battery height reduced from 2.0" to 1.4"

• Air Gun Testing (15,000g) with Thin-Film Battery at ARDEC – Successful

Longer-Life Applications

Process Industrialization Transition to higher speed coaters, calendars and punching

Thin-Film Heat Source

 Investigations are underway to choose a heat source which is safe, performs well and is cost-effective

Thank you to:

ARDEC: Battery development funding, air gun testing and support Carlos Pereira (POC), Charles McMullan, Jason DeVenezia, Brad Armstrong

Omnitek: Inertial starter development, production and testing support Dr. Jahangir Rastegar, Rich Murray

ASB Group: Thin Film technology development funding and support Emmanuel Durliat

Questions/Comments

Jeffrey Reinig Advanced Thermal Batteries 410-568-2217 Jeffrey.Reinig@atb-inc.com

