

56th ANNUAL FUZE CONFERENCE

Probabilistic Technology (PT) Application for High Reliability Fuze

Lee Luong
US Army ARDEC, RDAR-MEF-F
(973) 724-5687
lee.luong@us.army.mil
May 16, 2012

Outline

•	Title	P. 1
•	Outline	P. 2
•	Project Objective	P. 3
•	High Reliability Fuze Overview	P. 4
•	PT Overview	P. 5-6
•	PT Technical Approach	
	Roadmap	P. 7
	Fuze Logic Architecture	P. 8
	Fuze Reliability Analysis	P. 9
	PT Model & Simulation	P. 10-14
	Alternative Approach 1	P. 15
	Alternative Approach 2	P. 16
	Fuze Sub-assembly verification & validation	P. 17-19
•	Summary	P. 20

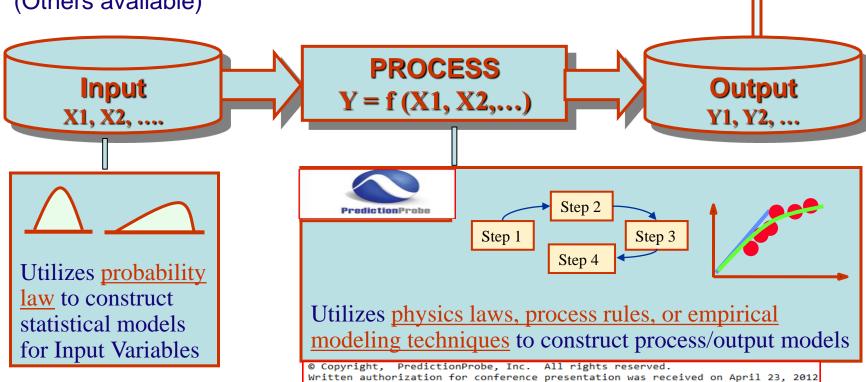
Project Objective

- Develop a Probabilistic Technology (PT)
 Process/Method that can be used to evaluate,
 predict, and improve reliability of any fuze
 architecture even with limited data.
- Part of the Joint Fuze Technology Program (JFTP) is focused on ARMY Fuze applications. Lessons learned will benefit other high reliability DOD Fuze programs.

PERFORMANCE GOAL: <1% UNEXPLODED ORDNANCE (UXO)

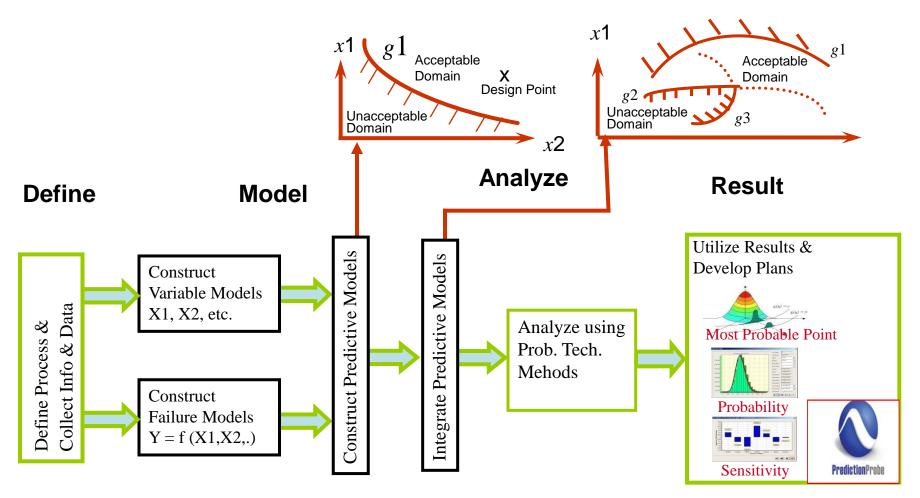
Fuze Design Approach:

- Redundant control electronics
- Redundant power sources
- Redundant Safe & Arm (S&A's) devices
- Multiple Detonation Function Modes
- Leverage previous and current fuze programs

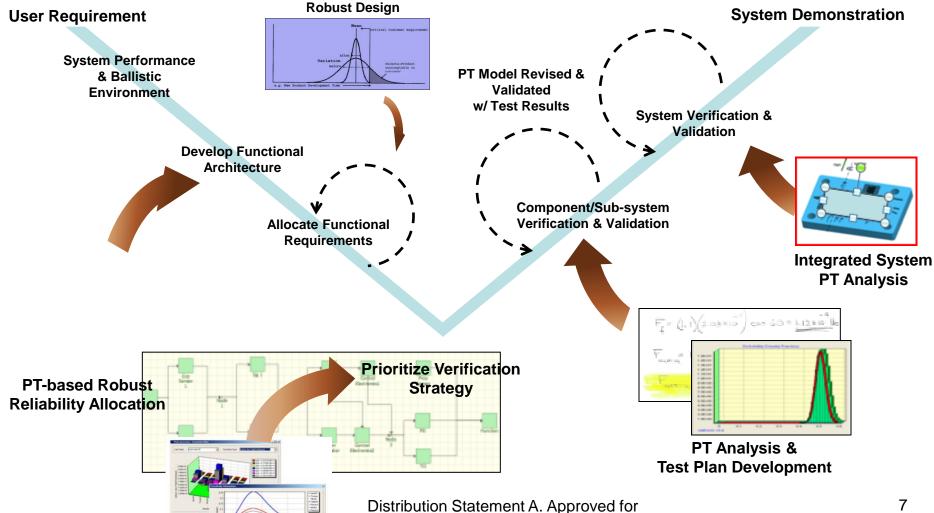


Probabilistic Technology Overview

Y1, Y2, ...

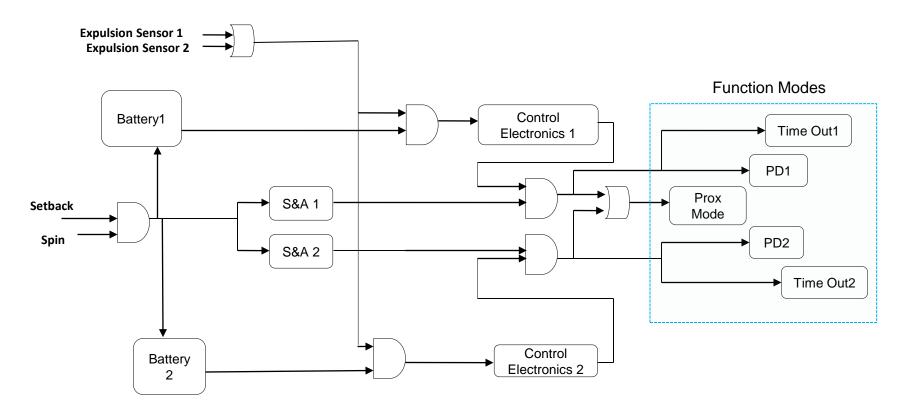

- Probabilistic Technology is a set of advanced predictive methods that allow for realistic predictions by integrating uncertainties into process models and evaluating the effects.
- PredictionProbe, Inc. Unipass PT software used. (Others available)

RDECOM Probabilistic Technology Overview



System Architecture Sensitivity Analysis

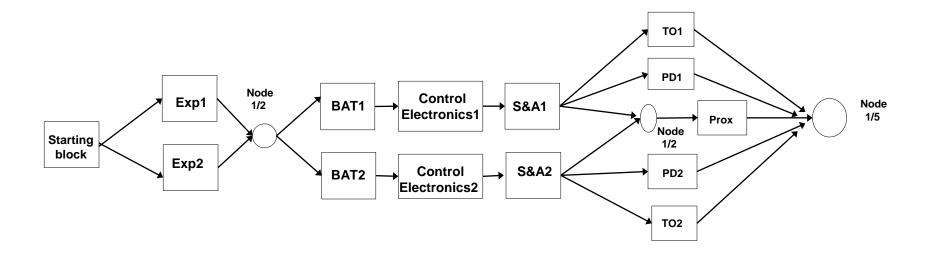
PT Approach Roadmap



public release; distribution is unlimited.

Fuze Logic Architecture

This represents the baseline design architecture


Note: PD1 = Point Detonation 1

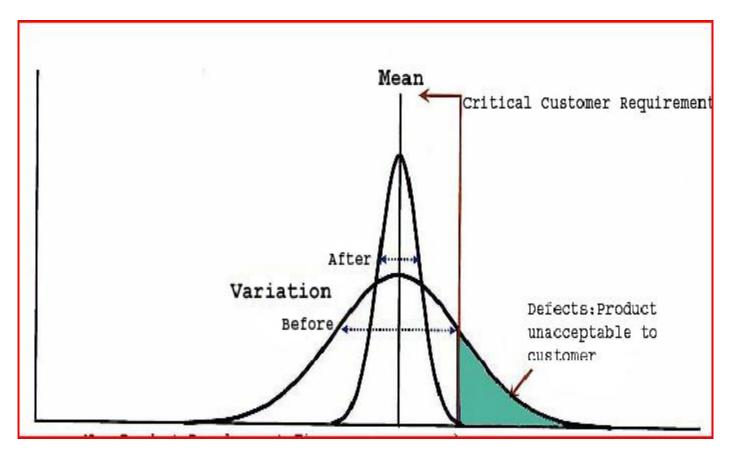
PD2 = Point Detonation 2

Fuze Reliability Analysis

Note: TO1 = Timeout 1

TO2 = Timeout 2

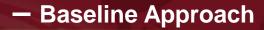
Model & Simulation - Top-down Analysis


Robust Design

- Model
 - > Construct Variable Models
 - > Construct Failure Models
- Input
 - ➤ Component Reliability Allocation Range
- Output
 - Component Reliability Allocation
 - Identify robust point which enables the design to achieve minimal deviation of response

Robust Design

Constraints for Robust Allocation -Baseline Approach



Design Variable Name	Input Description	Lower Bound	Upper Bound
ES1_range	Range of Mean Reliability of Expulsion Sensor 1	0.85	0.97
ES2_range	Range of Mean Reliability of Expulsion Sensor 2	0.85	0.97
SA1_range	Range of Mean Reliability of S&A 1	0.99	0.999
SA2_range	Range of Mean Reliability of S&A 2	0.85	0.92
Bat1_range	Range of Mean Reliability of Battery 1	0.9	0.992
Bat2_range	Range of Mean Reliability of Battery 2	0.9	0.992
ContE1_range	Range of Mean Reliability of Control Electronics 1	0.9	0.995
ContE2 _range	Range of Mean Reliability of Control Electronics 2	0.9	0.995
PS_range	Range of Mean Reliability of Prox Sensor mode	0.85	0.97
PD_range	Range of Mean Reliability of Point Detonation mode	0.85	0.92
TO_range	Range of Mean Reliability of Time Out mode	0.4	0.5

Fuze System Reliability Allocation = 0.9901

Robust Design Point

Variable Name	Output Description	Robust Mean Reliability
ExpSen1	Expulsion Sensor 1	0.92397
ExpSen2	Expulsion Sensor 2	0.92420
SA1	S&A 1	0.99899
SA2	S&A 2	0.91999
Bat1	Battery 1	0.98111
Bat2	Battery 2	0.98312
ContE1	Control Electronics 1	0.95874
ContE2	Control Electronics 2	0.99499
ProxS	Proximity Sensor	0.96954
PD	Point Detonation (PD)	0.91559
ТО	Time out (TO)	0.49891

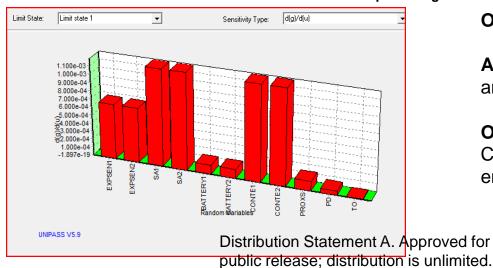
Subsystem Sensitivity

Baseline Approach

Fuze System Reliability Allocation = 0.9901

Four components that have greatest effect on the Fuze reliability (sensitivity)

Alternate Approach 1: Same as the Baseline except that both S&A's are identical.



Constraints for Robust Allocation

Design Variable Name	Input Description	Lower Bound	Upper Bound
ES1_range	Range of Mean Reliability of Expulsion Sensor 1	0.85	0.97
ES2_range	Range of Mean Reliability of Expulsion Sensor 2	0.85	0.97
SA1_range	Range of Mean Reliability of S&A 1	0.85	0.92
SA2_range	Range of Mean Reliability of S&A 2	0.85	0.92
Bat1_range	Range of Mean Reliability of Battery 1	0.9	0.992
Bat2_range	Range of Mean Reliability of Battery 2	0.9	0.992
CONE1_range	Range of Mean Reliability of Control Electronics 1	0.9	0.995
CONE2 _range	Range of Mean Reliability of Control Electronics 2	0.9	0.995
PS_range	Range of Mean Reliability of Prox Sensor mode	0.85	0.97
PD_range	Range of Mean Reliability of Point Detonation mode	0.85	0.92
TO_range	Range of Mean Reliability of Time Out mode (i.e. control electronics survive impact)	0.4	0.5

Fuze System Reliability Allocation = 0.9901

SA1 reliability range input changed

Robust Design Point (Output)

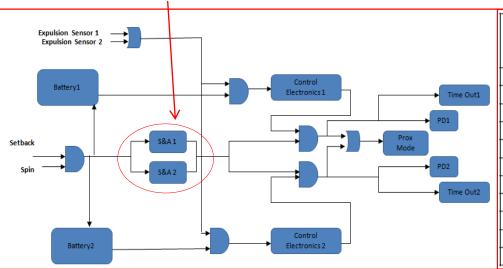
0			
Variable Name	Description	Robust Mean Reliability	
ExpSen1	Expulsion Sensor 1	0.95121	
ExpSen2	Expulsion Sensor 2	0.95123	
SA1	S&A1	0.92000	
SA2	S&A2	0.92000	
Bat1	Battery 1	0.99198	
Bat2	Battery 2	0.99200	
ContE1	Control Electronics 1	0.99500	
ContE2	Control Electronics 2	0.99500	
ProxS	Proximity Sensor	0.96995	
PD	Point Detonation (PD)	0.91997	
ТО	Time out (TO)	0.49304	

Observation

Architecture: Use 2 S&A 2's instead of S&A1 and S&A2.

Output:

Critical components are operating at the upperend reliability range.


TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Alternate Approach 2: Same as the Baseline except S&A's Redundant Architecture Change

Robust Design Point (Output)

Architecture change -- crossover initiation architecture

Variable Name	Description	Robust Mean Reliability
ExpSen1	Expulsion Sensor 1	0.94291
ExpSen2	Expulsion Sensor 2	0.94242
SA1	S&A1	0.99007
SA2	S&A2	0.92000
Bat1	Battery 1	0.93268
Bat2	Battery 2	0.93414
ContE1	Control Electronics 1	0.99474
ContE2	Control Electronics 2	0.99233
ProxS	Proximity Sensor	0.85055
PD	Point Detonation (PD)	0.85038
ТО	Time out (TO)	0.40000

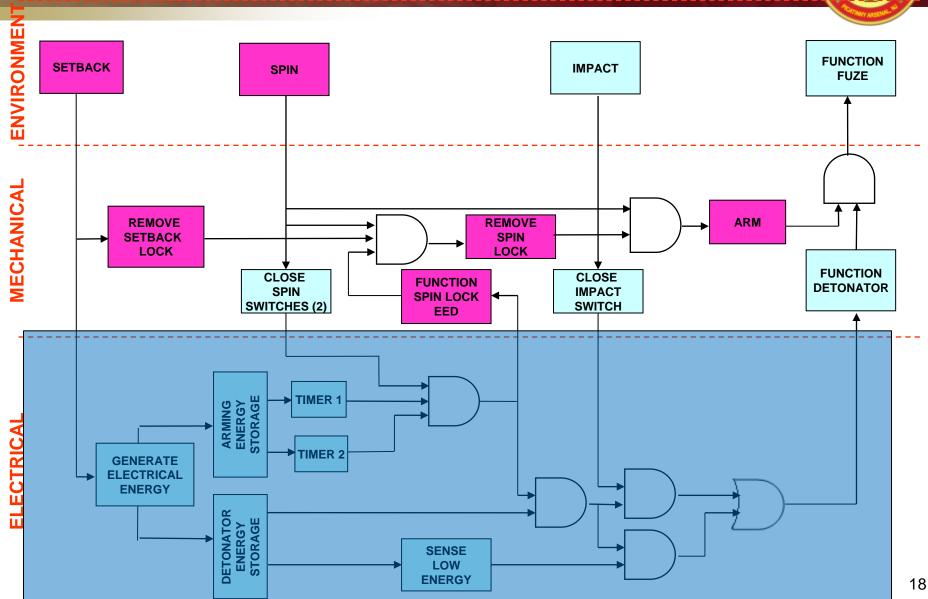
Observation

Architecture: Improve robustness, both S&A's could be functioned by either path of Control Electronics.

Output:

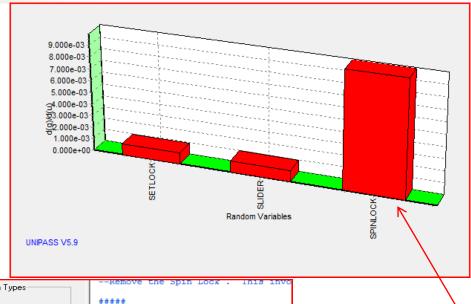
Reliability mean of the most critical component lower.

Fuze Sub-assembly Verification & Validation



- Control Electronics Continued effort
 - > Reduce part count trade studies
 - ➤ Component trade studies
 - > Architecture trade studies
- MEMS S&A (S&A2) Command Arm S&A (in progress)
 - ➤ Setback lock Analysis --- The result of PT simulation has indicated that the removal of setback lock under gun launch is very reliable.
 - ➤ Spin lock Analysis
 - Slider Assembly Analysis --- The result of PT simulation has indicated that the slider moves (due to spin environment) to align the explosive train is very reliable.
 - Remove the Spinlock --- Estimated to have .995 reliability by the time the item is qualified.

MEMS Fuze Block Diagram



MEMS S&A Sensitivity

Problem Types	- Analysis/Design Types	kemove
 Component Serial System Parallel System General System Probabilistic Methods	Probability Inverse Probability PDF/CDF Robust Design Optimization	##### TYPE NPDI SIZE NRV- CUTS PRT- 1, 0 MPPP MET- TOB= 0.0
First-Order Reliability Methods (FORM) Second-Order Reliability Methods (SORM) Simulation Methods (SM) Importance Sampling Methods (ISM) Response Surface Methods (RSM) Mean Value Based Methods (MVBM)		VDEF CLT= 1, 1 SetLock Slider SpinLock GDEF g1=SetLoc
		ENDS /SOLV MPPI CGC- PROB PFM: ENDS /EOF

#####

TYPE NPDF= 0,
SIZE NRV= 3, NGF= 1, NCL= 1, NUD=0,
CUTS PRT= 0, NCS= 1, TNE= 1
1, 0

HPPP MET= 3, MNI= 20, DSS= 0.0001,
TOB= 0.01, TOL= 0.01, IGM= 0

ZDEF
CLT= 1, NRC= 3
SetLock 1, 1, 2, .9999, .001, ,,
Slider 2, 1, 2, .9999, .001, ,,
SpinLock 3, 1, 2, .995, .01, ,,
SDEF
GUES

SETLOCK*Slider*SpinLock-.92

ENDS

/SOLV

HPPI CGC= 1, INI= 0, PRT= 1
PROB PFM= 1, SIM= 0, SPA= -1

Most critical function

Summary

Why Use Probabilistic Technology?

- PT can be used to evaluate and predict fuze reliability even with limited data.
- PT can be used for Design or Analysis, and could be applied throughout all phases of the project.
- PT is physics based process that systematically evaluates the impact of uncertainties.
- The output of the PT process provides 3 key metrics to quantitatively evaluate design performance
 - > Probability Information
 - > Sensitivity
 - Most Probable Point