

Lightweight Multi-Role Missile Integrated SAFU & Lethal Payload L.J.Turner - Thales

Thales Ordnance Systems

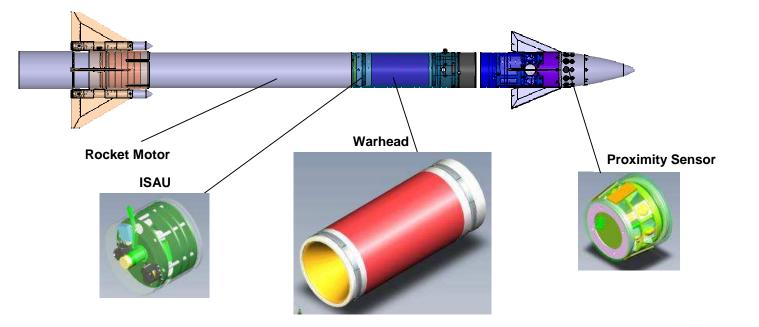
Lightweight Multi-Role Missile - Overview

Lightweight multi-role missile :

- low cost/low mass/multi-purpose
- **Precision strike/light platforms.**
- Defeat of Land, Sea & Air targets ٠
- Anti-FIAC (Fast Inshore Attack Craft)

Family of weapons : nce PDM No 1015170 Issue 001

- **Expansion into future variants**
- **Multiple Platforms**
- **UAV** capable



Lightweight Multi-Role Missile

- Requirement for a novel integrated SAFU
- For both warhead & second stage rocket motor

Integrate the Lethal Payload

- Warhead & SAU as a single unit
- Compact design small space envelope
- Integrated safety & arming unit and second stage rocket motor ignition safety
- Combine the qualification Reduce Development Time & Cost

THALES

ISAU - Key functions

Reference PDM No 1015170 Issue 001

Energetic Interface to both rocket motor & warhead

Detonator and Through Bulkhead Igniter

Prevents unintentional arming

Second stage Rocket Motor & Warhead

Autonomous ignition of the second stage rocket motor


After achieving safe distance from the launch platform

Arming the warhead

Missile has achieved warhead safe separation

Initiate the warhead

Receipt of the trigger

Warhead & Rocket Motor

- Safety and design issues
 - integration of the two different safety functions within the same physical package
 - Common safety environmental inputs
- Benefits of integrated design
 - Reduction of time and cost of qualification

Different safety standards

SAU – STANAG 4187 (Mil-Std-1316)

- Safety functionality should not be mixed
- Shared safety environments
 - Power
 - First Motion (IOM)
 - Bore Rider

MISAU – STANAG 4368 (Mil-Std-1901A)

- Latest version closer to warhead safety standards
 - Shuttered primary energetics
 - In line firing levels greater than 500 Volts

Integration of both standards

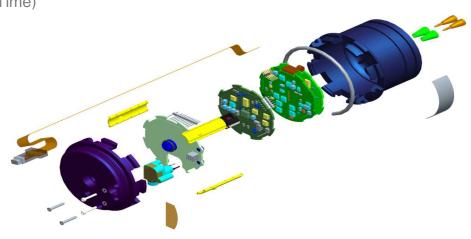
Ensure all safety requirements met

ISAU Integrated Safety Architecture

Integrated safety sequence

- For autonomous weapon functions
 - Second stage rocket motor and warhead
- Safety 1
 - Instant of move (IOM) + Arming power
- Safety 2
 - First stage rocket motor
 - Borerider (Set back, spin & tube exit)
 - Two independent electronic timers

Second stage rocket motor fires


- Safety 3
 - Second stage rocket motor 0
 - Accelerometer circuit (Acceleration + Time)
 - Two independent electronic timers 0

Warhead armed

- **Target Detection**
 - Impact trigger 0
 - **Proximity trigger** 0

Warhead fires

Initial ISAU Safety Functions

- Power supply on
- ISAU monitors the Instant of Movement (IOM) and Bore Rider (BR) validation circuits
- First Stage Rocket Motor Fires
- IOM circuit detects tape break and switches power on to timer and control circuitry.
- Circuitry detects BR closure
- Timers one and two triggered from BR
- Parallel Timers one and two complete sequence

Rocket Motor Functions

- Rocket Interface Circuit power is switched on
- Rocket Static Switch 1, 2 and Rocket Dynamic signal is switched on
- Rocket interface circuit fires igniter
- Second Stage Rocket Fires

Reference PDM No 1015170 Issue 001

8 /

Warhead Arming Functions

- Velocity Sensing Accelerometer Circuit acquires velocity within time window
- Parallel Timers one and two complete sequence
- Warhead Static Switch 1, 2 and Warhead Dynamic signal is switched on
- Warhead Charging Circuit power is switched on.
- HV Capacitor starts charging
- ISAU transits to Armed
- Trigger pulse initiates detonation

Independent parallel timers for the Rocket Firing circuit

- Different technology
- Triggered by Environmental inputs (IOM & BR)

Independent parallel timers for the Warhead Arming circuit

- Different technology
- Triggered by Environmental inputs (IOM & BR)

Physical implementation

- Rocket Motor timers
 - Physically separated
 - Implemented on separate boards

Warhead Arming timers

- Physically separated
- Implemented on separate boards

Rocket Motor Inhibit function

Prevent second stage rocket motor firing if Timer not elapsed.

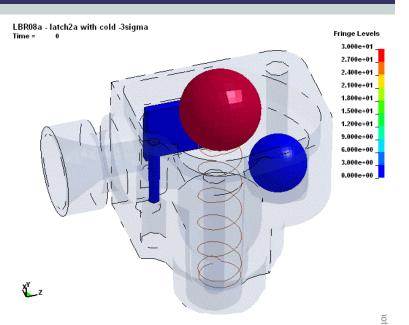
Impact Detection function

Prevents second stage rocket ignition if an impact is detected (e.g. the ground)

Min safe second stage rocket ignition distance

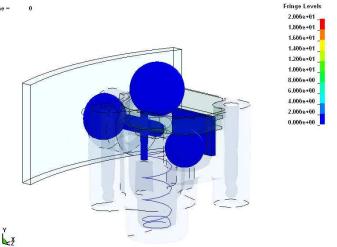
 Rocket Timers not to expire before minimum Safe Distance when the missile is travelling at lowest velocity.

Minimum safe arming distance

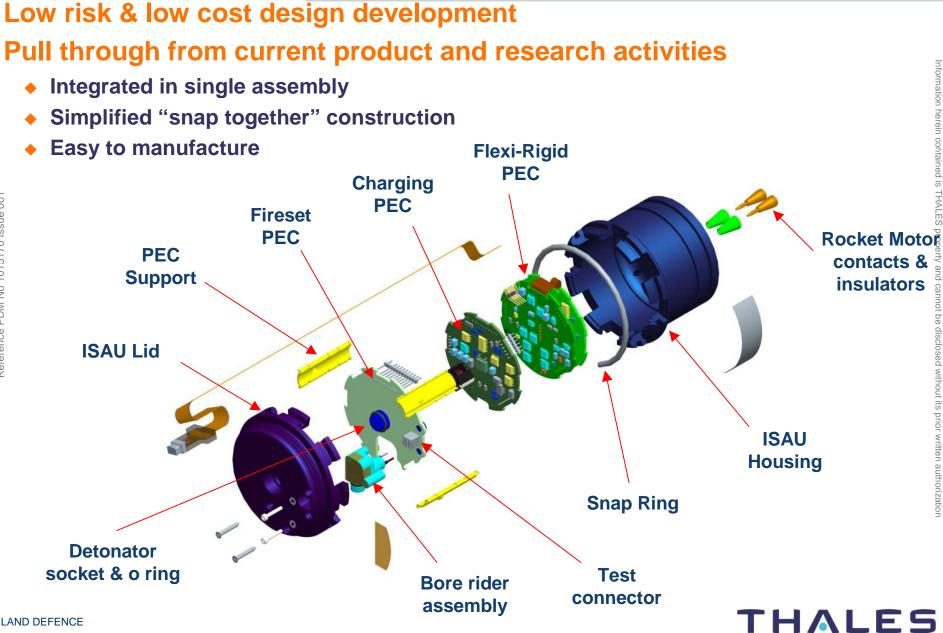

- Warhead Arming Timers, not to expire before missile has travelled beyond safe separation threshold
- Environment 3 Missile Velocity verification from second stage rocket motor prior to expiry of Warhead Arming Timer.
- If the Velocity verification occurs after the timer expires then the Arming process shall be inhibited.

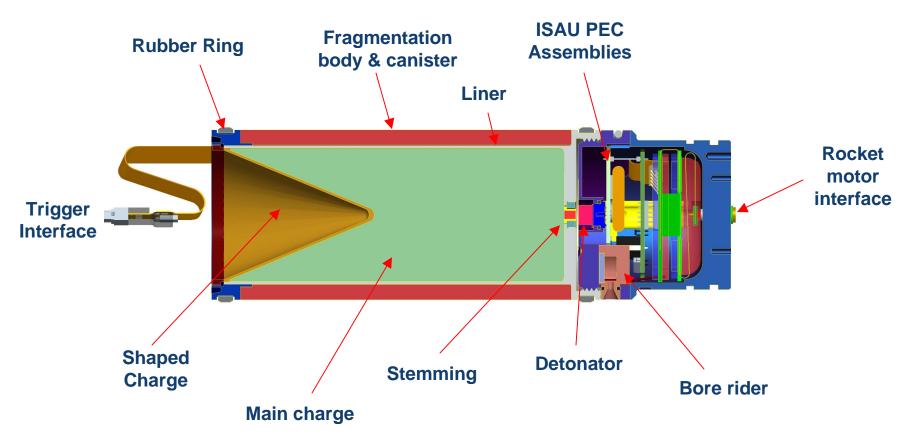
Safety 2 - Bore Rider Assembly

B Model Bore Rider Assembly

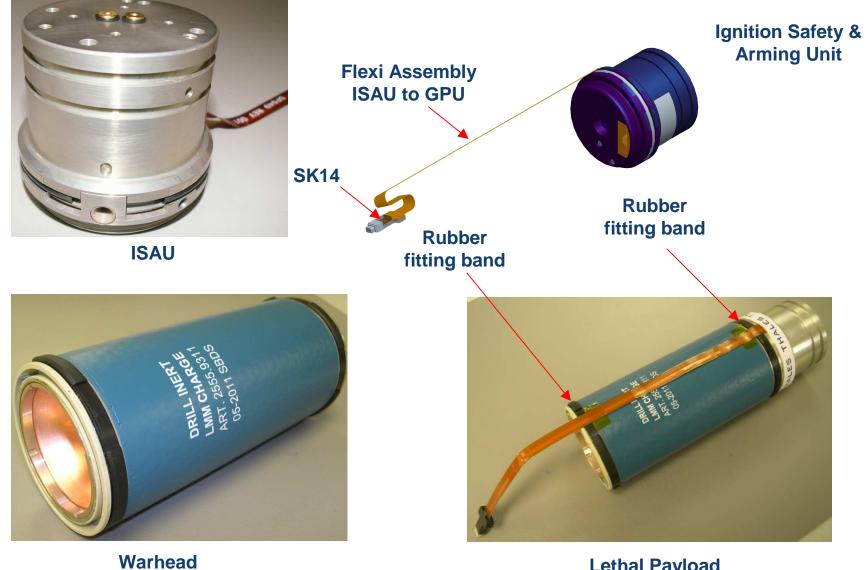

- Designed to meet STANAG 4187
 - No stored energy tending to arm
- Designed to use 3 available environments
 - Launch Shock
 - Roll rate
 - Tail pick-up Cover plate removal
- Mechanical latch
 - Ensures contact if spin rate drops below threshold
- LS Dyna modelling
- Catapult testing performed

Time





Mechanical – ISAU Assembly


13 /

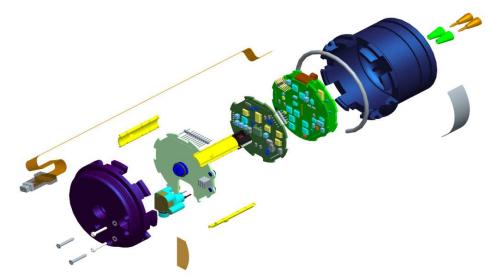
Lethal Payload Assembly

Lethal Payload System Modules

Lethal Payload

THALES

Reference PDM No 1015170 Issue 001


Safety Compliance

Information herein

contained is THALES property and cannot be disclosed without its prior written authorization

Safety

- Compliance to STANAG 4187 & 4368
- Mixed functionality and safety environments
 - Work with the national safety board to address early
 - Good partitioning of functionality
 - Ignition circuits separated from Initiation circuit
 - Design now provisionally accepted by UK DOSG

One Stop Shop for Fuzing Systems

Information

nerein

contained is THALES property and cannot be disclosed without its prior written authorization

Advantages

Single integrated unit

- Simplified ESAU design for both warhead & rocket motor ignition
- Reduced volume, easier to integrate/mount in weapon
- Reduced complexity greater reliability
 - Shared safety 1
 - Shared safety 2
 - Shared power supply

Single integrated development & qualification programme

- Reduced cost of management and common activities
- Single qualification programme
- Integrated lethal Payload
 - Integrated approach of warhead and ISAU
 - Common qualification activities

One Stop Shop for Fuzing Systems

17 /

The Future

nerein

contair

ned is THALES property and

cannot

be disclosed without its prior written authorization

18 /

Further integration of the lethal package

- Lethal Package defined as Warhead/SAU/MISAU
 - Similar to Hard Target Fuze
 - Onboard sensor and trigger processing
 - Accelerometer, Processing and intelligent algorithms for Hard Target Fuze
 - Laser or RF detection with processing and algorithms for Prox Fuze

Integration of Safety Standards

• STANAGS 4187 (Mil-Std-1316) & 4368 (Mil-Std-1901A)

• Create a single common standard for weapon energetics safety

The Future for Lethal Ordnance Systems

LMM Trials Video

THALES

END

