

2012 NDIA Fuze Conference 14 & 16 May 2012 NSWC – Indian Head, MD

Active Mitigation: Rocket Initiator Thermally Activated (RITA) Insensitive Munitions (IM) Device for the MK22 Mod 4 Rocket Motor

John Swain

Code E15JS, Bldg 841 IHDIV, NSWC Indian Head, MD 20640

Matthew Sanford Code E34MS, Bldg 302

IHDIV, NSWC Indian Head, MD 20640

Distribution Statement A: Unlimited - Approved For Public Release

Rocket Motor Improvements

- Proposed Solutions:
 - 1. Fully vent both ends using a thermally activated shape memory alloy (NiTiNOL) release mechanism
 - Modify headcap
 - Modify igniter bulkhead
 - New end enclosure
 - 2. Ignite surface of propellant prior to auto-ignition using an Active Mitigation Device (AMD)
 - Rocket Initiator Thermally Actuated (RITA)

RM IM Improvement Approach

Design approach temperature timeline to allow safe, controlled venting (SCO Profile):

Concept Testing

- Slab Motor Tests
 - Determined Propellant Could be Safely Ignited At Elevated Temperatures
- High Temperature Vented Test
 - Proved Active Mitigation Device Required
- High Temperature Ignition Test
 High Temperature Ignition Viable
- Limited RITA Functionality Tests
 - Showed that the NiTiNOL bar could meet our requirements and that the primer would transfer to the Initiator

Distribution Statement A: Approved For Public Release

High Temperature Ignition Test (Double Venting)

MK22 Mod 4 Rocket Motor

Current Production Configuration

N-5 Double Base Propellant Autoignition Temperature ~255°F

EX 22 Mod 5 – Fwd Vent

EX 22 Mod 5 – Aft Vent

Thermally Venting Bulkhead

***RITA Not Pictured**

Distribution Statement A: Approved For Public Release

Early Compact RITA Design

Revised Low-Profile RITA Design

Distribution Statement A: Approved For Public Release

Compact RITA Design

Actuation Process:

- 1. RITA In Safe Position
 - Primer Out of Line With Initiator Charge
 - NiTiNOL Bar Is A Structural Member (Device Lock)
 - No Stored Energy

Distribution Statement A: Approved For Public Release

Early Compact RITA Design

Actuation Process Cont'd:

- 2. RM & (RITA) Exposed To Cook-off Environment (SCO or FCO)
 - NiTiNOL Bar Begins To Contract
 - Slider Begins To Pivot
 - Striker Begins Moving Along Slider Ramp

Compact RITA Design

Actuation Process Cont'd:

- 3. RITA Fully Actuates (Armed Position)
 - NiTiNOL Bar Completes Contraction
 - Slider Completes Pivot Motion
 - Striker Reaches the Apex of Slider Ramp And Releases
 - Firing Pin Impacts Primer
 - Begins Ignition of Initiator Charge / Igniter / RM

Distribution Statement A: Approved For Public Release

Excellence for the War

2nd Generation RITA Design Improvements

- 1. Eliminate pressure loss in BKNO3 to Igniter transfer
- 2. Increase margins of safety on the striker/ firing pin and NiTiNOL contraction percentage
- 3. Incorporate a 2nd Safety Feature into the RITA system (FISTRP Requirement)
- 4. Retest BKNO3/Igniter transfer
- 5. Follow up with DVT and Qualification Testing of the RM

2nd Generation RITA Design

14

Excellence for the Warfighter

Components

Safe and Fire (4% NiTiNOL Contraction)

Safe and Fire Cutaways

SAFE POSITION ARM/FIRE POSITION

Retracted Position (Misfire)

Distribution Statement A: Approved For Public Release

Successful Component Level Testing:

- Pull-Testing of Springs to Confirm Proper Firing Energy
- Pull-Testing of Slider Assembly to Confirm Required Pull Force and Pull Energy Requirements
- Pull Testing of Slider and Shear Pin Resistance
- Striker Bar, Firing Pin, and Primer Initiation Tests
- Various Tensile Tests on NiTiNOL Bars to Confirm Available Pull Force and Pull Energy
- Transfer Testing Between Primer and Initiator
- Out of Line Safety Tests, Primer to Initiator
- Function Testing of Initiator Check Valve
- Function Testing of Two Slider Materials
 - Electroless Nickel Plated Teflon Impregnated SS Slider
 - Teflon Impregnated Hard Annodize on Aluminum Slider

Successful Results of RITA Assembly SCO Tests

A thermocouple "witness" indicator was placed across the output of the check valve initiator.

Distribution Statement A: Approved For Public Release

Excellence for the Warfighter

High-Speed Video of RITA Functioning (Manual Pull)

DOD ENERGETICS CENTER Excellence for the Warfighter

Conclusions

- The NiTiNOL based initiation device described here appears to be a viable active mitigation option
- The mechanism described is simple and robust, and appears to be safe and reliable, despite single environment (heat only) activation
- A full set of safety testing (drop, vibration, temperature cycling, etc.) still needs to be done, and likely some minor design refinements based on the test results
- Evolving active mitigation requirements have driven design modifications and features throughout the development of this device

Acknowledgements

- Intrinsic Devices Inc. for NiTiNOL Fabrication and Developing Requirements for the material
- ATR for their Support in Configuration Review
- Tidewater Machine for Drawing and Design Review and Hardware Fabrication
- IHDIV, NSWC
 - Nancy Johnson Effort Coordination Support/Project Management
 - Frank Valenta & Pete Margiotta Primer & Design Support
 - Murthy Bettadapur Material Selection & Testing Support
 - Ricky Johnson Hardware Receipt Inspection
 - Danny Bouch RM Assembly
 - Bob Johnson RITA/Initiator Fabrication
 - Mike McDonnell & John Lawrence Inert Component Testing
 - Paul Wallman & Mark Principe Live Energetic Component Testing

Contact Information

Mr. John Swain

Indian Head Division, NSWC 4081 N. Jackson Road, Suite 2 Indian Head, MD 20640 (301) 744-1162 john.e.swain@navy.mil

Mr. Matthew Sanford

Indian Head Division, NSWC 4103 Fowler Road, Suite 107 Indian Head, MD 20640 (301) 744-1929 matthew.j.sanford@navy.mil

26