Test and Evaluation of **Autonomous Ground** Robots

Panel Members:

Jeff Jaczkowski, RSJPO Gary Frost, US Army REF Myron Mills, Lockheed Martin Corp

with an introduction by:

Kelly Swinson, ATC

The AGV Test Perspective

NDIA Ground Robotics Capabilities Conference and Exhibition Kelly Swinson US Army Aberdeen Test Center 23 March 2012

Army Proven Battle Ready

Purpose

To describe the capabilities the US Army Aberdeen Test Center (ATC) currently possesses to test today's Autonomous Ground Vehicles (AGVs) and to identify what must occur for ATC to test the next generation of higher autonomy.

Army Proven Battle Ready

Testing

- ATEC has conducted over 100 robotic tests over 15 years
- Generation 0 Teleoperated Systems
 - Test requirements dependent on system specifications vice the mission the system is intended to fulfill
 - Currently set test methodologies evolved over time
- Next Generation Semi-Autonomy and Beyond
 - Software intensive systems
 - Pose additional test complications (perception, detection, reasoning)

Safety Releases vs Safety Confirmations

- Safety Releases specify constraints required to ensure Soldier safety when using experimental equipment at a specific place during a limited time period
- Safety Confirmations indicate overall safety of the system and identify hazards not adequately controlled/mitigated, lists technical or operational limitations, and highlights safety problems that require further investigation/testing

TESTING FOR OUR ULTIMATE CUSTOMER – THE WARFIGHTER

US Army Aberdeen Test Center

Army Proven ₆ Battle Ready

AGV Use

- AGVs inherently present catastrophic risks.
 - Can be documented and controlled only to the extent they're understood and proven

- Need to develop Safety Releases to enable closer and more realistic Soldier interaction with SUT
- Need to develop Safety Confirmations with lower Risk Assessment Codes (RACs)

What's the Problem?

- Fundamental Design
 Documentation
 - Software/Hardware Architecture
- System/Subsystem Test Data
 DTP/Final Report
- Verified & Validated Models

All have not been made available

With these, the test community can tailor final verification test events

Army Proven Battle Ready

What's the Solution?

- Prepare contracts to allow the sharing of software and system design documentation
- Developers establish a system safety plan IAW MIL-STD-882D and software safety engineering program using JSSSEH as general guidance
 - ID, document and track all system and sub-system level hazards; create closed loop hazard tracking database
 - Determine software influence on above hazards

What ATC Provides

System Development	Formal Testing	Analysis	
Customer Testing	Technical Testing Performance, Endurance, RAM, RSV, Mobility	Data Reduction	
Documentation Review Detailed Test Plans	Safety Testing Software, System Safety, Fault Isolation, Troubleshooting	Data Analysis	
Embedded Instrumentation	Facilities Automotive Courses, Climatic, EMI, C4, Weapons Accuracy, Sensor Tech	Test Incident Reports Data quality, scoring support	
"On Location" Test Observation	"On Location" Test Execution		
	Test Methodology Development		

www.atc.army.mil

Army Proven 10 Battle Ready

Kelly Swinson Unmanned Ground Vehicles US Army Aberdeen Test Center 400 Colleran Road Aberdeen Proving Ground, MD 21005 (410) 278-4735 DSN 298-4735 kelly.k.swinson.civ@mail.mil

Army Proven Battle Ready

BACK-UP SLIDES

Army Proven Battle Ready

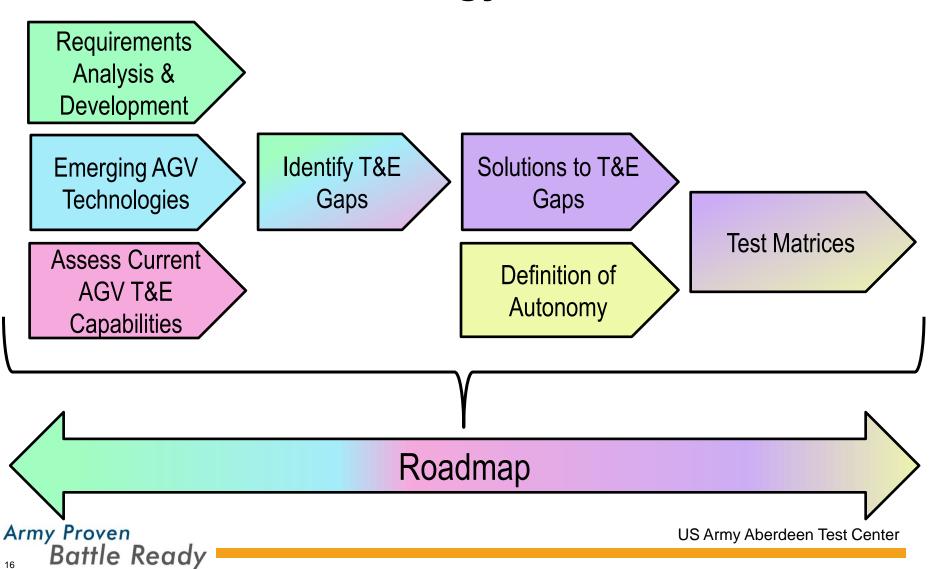
REFERENCES

- AR 385-16 "System Safety Engineering and Management"
- AR 73-1
- AR 700-142
- AR 385-10
- DA PAM 73-1
- JSSSEH
- MIL-STD-882

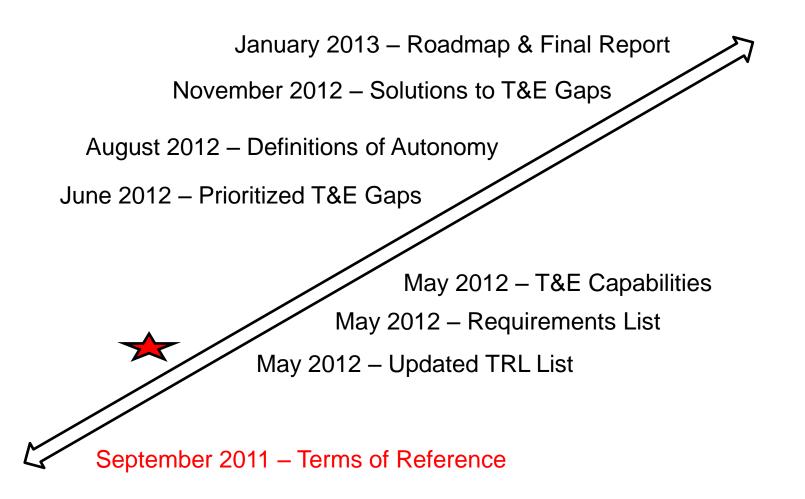
		HAZARD PROBABILITY				
		FREQUENT	PROBABLE	OCCASIONAL	REMOTE	IMPROBABLE
	SPECIFIC INDIVIDUAL ITEM	Likely to occur frequently	Will occur several times in the life of the item	Likely to occur sometime in the life of the item	Unlikely but possible to occur in the life of an item	So unlikely it can be assumed the occurrence may not be experienced
	FLEET OR INVENTORY	Continuously experienced	Will occur frequently	Will occur several times	Unlikely but can reasonably be expected to occur	Unlikely to occur but possible
		Α	В	с	D	E
HAZARD SEVERITY	CATASTROPHIC I May cause death or system loss	HIGH	HIGH	HIGH	SERIOUS	MEDIUM
	CRITICAL II May cause severe injury, severe occupational illness, or major system damage	HIGH	HIGH	SERIOUS	MEDIUM	MEDIUM
	MARGINAL III May cause minor injury, minor occupational illness, or minor system damage	SERIOUS	SERIOUS	MEDIUM	MEDIUM	MEDIUM
	NEGLIGIBLE IV May cause less than minor injury, occupational illness, or system damage	MEDIUM	MEDIUM	LOW	LOW	LOW
D	damage					

Army Proven 14 Battle Ready

ASTERS Objectives & Challenges


- ASTERS will assess the current state of:
 - Emerging AGV Technologies
 - Emerging AGV Requirements
 - Current test (DT/OT) and evaluation capabilities
- Challenges
 - Effective T&E
 - Unique considerations of AGVs through T&E

Army Proven Battle Ready


Methodology/Process

Deliverables

Army Proven Battle Ready