
Ballistic Missile Defense And the Missile Defense Agency

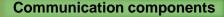
May 2012
Dr. David Burns
Director for Science and Technology
Advanced Technology

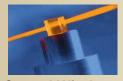
Today's Ballistic Missile Defense System

Potential Areas Of Missile Defense Technology Collaboration

Remote Sensing

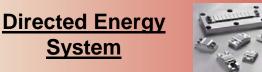






Guidance Components

Ballistic Missile Defense Interceptor



Crystal Windows

High Efficiency Energy Storage

Laser Diodes

Efficient Power Conditioning

Producibility Quality Reliability

Advanced Technology Programs

Advanced Remote Sensing

Data Fusion

Space-Based

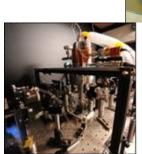
Sensor

Focal Plane **Array**

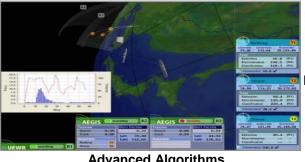
Infrared **Detector** Material

Image Processor

Directed Energy Research


High Energy Laser

High Altitude Characterization



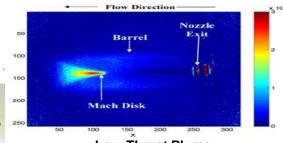
Laser Diodes

Cryo Laser

Advanced Research

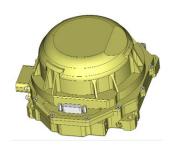
Advanced Algorithms

Seeker **Technology**

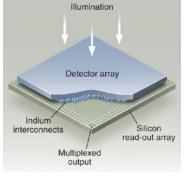

Lightweight Composite

Housing Structure

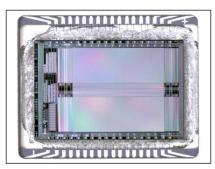
O-Ring and Bearings



Silicon Carbide Mirrors



Remote Sensing And Interceptor Technology


- Larger Format Sensor Arrays
 - Develop for greater sensitivity and longer acquisition ranges
- Lower Noise Inertial Measurement Unit
 - Reduce noise for higher accuracy by controlling biases and drift
- Environmentally Ruggedize Electronics
 - Increase structural and material survivability maintaining high performance in operational environments
- Advanced Power Supplies
 - Create lightweight solid state power sources for long duration operations
 - Increase energy levels and efficiencies

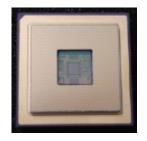
Inertial
Measurement Unit

Focal Plane Array

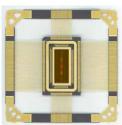
Ruggedized Electronics

Low Temperature Battery

Remote Sensing And Interceptor Technology


- Lightweight Structures and Materials
 - Reduce payload weight to achieve high velocity, agility, and fly-out range to increase battle space

- Develop advanced shielding materials to protect subsystems during stressful operating conditions
- Multi-Spectrum Longer-Range Acquisition Seeker
 - Increase focal plane array sensitivity
 - Develop lighter weight optics
- Higher On-Chip Processing Capacity
 - Increase chip processing speed to reduce dependence on ground-based data processing

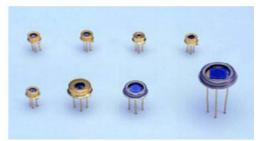

Lightweight Composite Sunshade

Multi Spectrum Focal Plane Array

Silicon Carbide (SiC) Mirrors

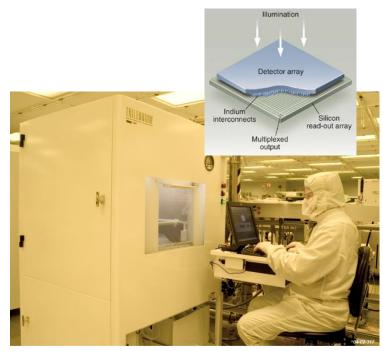
Hardened Dual-Port (DP) Static Random Access Memory (SRAM)

Directed Energy Technology


- Lightweight Cooling for Solid State High Energy Lasers
 - Develop innovative solutions to cool solid state laser systems generating mega-joules of heat
- Power Sources / Batteries for High Energy Lasers
 - Develop techniques for lightweight, high energy density, multi-mega-joule power generation and storage
- Improve Diodes for High Energy Laser systems
 - Narrow bandwidth diodes
 - Less expensive
- Ultra Sensitive Detectors
 - High bandwidth, high frame rate, low noise
 - Camera system for wave-front sensing
 - Tracking, ranging, and imaging
 - Survivable optical gratings and coatings

Platform Integration

High Energy Laser



Ultra Sensitive Detector Focal Plane Arrays

Producibility, Quality, And Reliability

- Our focus is on producibility, performance, and yield
- On-going efforts to improve focal plane array yields include:
 - Increased wafer size to improve yield
 - Transitioned from development to a production line
 - Initiated automated handling and material processing to reduce defects
 - Pursue multiple suppliers
 - Implement automated wafer cleaning process
 - Simplification of production processes

Automated Clean-up Etch Process

 Goal is to increase focal plane array yields and reduce cost without sacrificing performance

University Research To Satisfy Missile Defense Needs

- Missile Defense requires cutting edge technology
 - Over \$50M/year available for university research
- Small Business Research
 - Small Business Technology Transfer program
 - Universities partner with small business
 - Annual call for proposals from 24 Apr 24 May 2012 and 26 Jul - 27 Aug 2012
 - Up to \$660K per project is available
 - Small Business Innovation Research
 - Universities subcontract with small business
 - Annual call for proposals from 26 Jan 27 Feb 2012 and 26 Jul - 27 Aug 2012
 - Up to \$530K per project is available
 - Link: http://sbirsttr.com
- Missile Defense Science & Tech Adv Research (MSTAR)
 - Annual call for proposals from Spring/Summer 2012
 - \$0.6M/year is available
- Advanced Technology Innovation Broad Area **Announcement (ATI BAA)**
 - Continuously open call for new ideas
 - Funding available as required
 - Link: http://www.mda.mil/business/research_opportunities.html

TOLEDO

Tech

The United States Military Academy

Approved for Public Release 12-MDA-6516 (11 Jan 12)

Summary

- Missile Defense Advanced Technology
 Programs are on the critical path to counter emerging BMDS threats
- Research Emphasis and Technology needs
 - Advanced Sensors
 - Directed Energy
 - Advanced Interceptor Technology
- MDA realizes the value of and looks to small business to lead the way in creative BMDS solutions to current and future Gap needs

