

Jennifer Batson Ab Hashemi

November 7, 2012

Outline

- Innovation & Technology Development
 - Business Imperatives
 - Traditional Product Development
 - Virtual Prototyping Definition
 - Technology Maturity
 - Product Life Cycle
 - Managing Product Life Cycle
 - Product Development
 - Affordability & Agility
 - Evolution and Path Forward

Innovation & Technology Development

Business Imperatives

- ➤ Traditional product development process requires design, analysis, and testing that are time consuming, expensive, with sluggish response to changes in market conditions and technology demands.
- Iterative analysis and testing are often the main vehicle for product development, proof of concept and business campaigns.
- While maintaining <u>evolutionary</u> technology, a <u>revolutionary</u> approach is required to streamline design, analysis, innovation and product development to meet <u>affordability</u> requirements of business challenges.
- Industry is moving ahead with <u>virtual product development and</u> <u>marketing</u>.

Due to use of variety of tools and processes, development of an open-architecture virtual prototyping capability is essential in the context of Model Based Engineering for agile product development, operational excellence, affordability and sustainment.

Traditional Product Development

unction

The challenge is to enable engineers to <u>efficiently and</u> <u>at low cost</u> investigate <u>geometry, physics, and</u> <u>function</u> together in <u>high fidelity</u> and in <u>real time</u>.

Virtual Prototyping

- Virtual design and prototyping
 - Is an associative process of design, analysis, performance evaluation, and visualization in a virtual environment based on mechanistic physical principles, accurate analysis, and reliable performance predictions
 - Streamlines design, analysis, innovation, and product development to meet the affordability requirements dictated by the current and future business environment.

Virtual Design & Innovation

cunction

Advances in computing provide the potential for enabling engineers to <u>efficiently and at low cost</u> develop <u>virtual products</u>.

Product Development Evolution

Technology Maturity & Product Development

- ➤ A best practice used in the commercial world and identified by GAO is to separate technology maturation from product development.
- In an ideal case, a research organization matures developing technologies in a laboratory environment.
- In a laboratory risk of failure is acceptable. The lab conducts experiments and naturally experiences some failures along the high road to knowledge.
- A product developer will use a specific new technology only after it has achieved a reasonable level of maturity in the research environment.

Use only mature technologies when developing products.

Product Life Cycle Development Architecture

Provides interchangeable CAD and CAE tools and accommodates and requires one-time customization & license for each tool—some exist.

10

Managing Product Development

Identify tool development needs & path forward

Identify discriminators for affordability & agility

Develop integrated tools & capabilities

Effective Leadership

Cohesive TeamEnvironment

Identify best practices for manufacturing & life-cycle maintenance.

Develop & maintain subject matter expertise

Maintain knowledge base and support business campaigns

Technical liaison with Stake Holders

Develop & recommend best practices

Maintain mathematical solution techniques

Maintain problem solving expertise based on fundamental physics

Product Life Cycle Affordability

Traditional Versus Agile Project Management

| Traditional PM | Agile PM |
|--|--|
| Focuses on processes and tools | Focuses on team communication and interaction |
| Anticipates limited changes and requires comprehensive documentation | Places priority on developing products and/or solutions that will be progressively modified and improved |
| Emphasizes the importance of contract negotiation and tasks delineated in the contract | Emphasizes the importance of customer — project team collaboration and daily communication |
| Works the plan; follows the plan to the end | Features flexibility and response to change |
| No restriction | Favors object-oriented technology |

Traditional Versus Agile Process

| Traditional Tolodo 7 5 110 1 100000 | | | |
|---|---|---|--|
| | Traditional | Agile | |
| Fundamental
Assumptions | Systems are fully specifiable, predictable, and can be built through meticulous and extensive planning. | High-quality, adaptive products can be developed by small teams using the principles of continuous design improvement and testing based on rapid feedback and change. | |
| Control | Process-centric | People-centric | |
| Management Style | Command-and-control | Leadership-and-collaboration | |
| Knowledge
Management | Explicit | Tacit | |
| Role Assignment | Individual — favors specialization | Self-organizing teams — encourages role interchangeability | |
| Communication | Formal | Informal | |
| Customer's Role | Important | Critical | |
| Project Cycle | Guided by tasks or activities | Guided by product features | |
| Development Model | Life cycle model (Waterfall, Spiral, or some variation) | The evolutionary-delivery model | |
| Desired
Organizational
Form/Structure | Mechanistic (bureaucratic with high formalization) | Organic (flexible and participative encouraging cooperative social action) | |
| Technology | No restriction | Favors object-oriented technology | |

Virtual Prototype Example - Associative Design & Simulation Summary

NX CAD/CAE – Bracket part/ Idealized part creation/ Mesh creation / Thermal analysis/ Structural analysis

New feature propagate to idealized part; previous simplifications preserved. Finite element model update automatically. Simulations associatively update.

Virtual Prototyping Roadmap

Operational Performance Production Rapid Prototyping/ Manufacturing **Design and Analysis**

Evolution

Technology Application

Enabling Better Design Decisions

Validating Design

Winning New Business

Realizing Picometer Accuracy

Emerging Applications

Testing New Concepts

Jennifer Batson and Ab Hashemi November 7, 2012 17

Product Applications

Advanced Component Prototyping

Heat pipeElectronic Subsystem

Transistor

Chip MLI

- •OC OTEC
- •CC OTEC
- Geothermal
- Solar OV Farm
- Wind Farm

Operational System Development

- •BWR/PWR
- Aircraft
- Spacecraft

November 7, 2012 Jennifer Batson and Ab Hashemi

Trend

- >Integrated Multidisciplinary
- Modular Experimental Facility
- Virtual Prototyping
- Digital & Agile Manufacturing
- Seamless and Automated Quality Control

Thank You