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Rotorcraft in Hover

® Rotor wakes are largely dominated by the trailing
vortex system y

UH-60 Black Hawk in hover V-22 Osprey in hover

e The hover condition represents one of the true values
of the helicopter

e A limiting design point in terms of power requirements
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Why is “First-Principles” Simulation

of Hover so Challenging?

Rotary-wing vehicle aerodynamic loads are
heavily influenced by their own vortical
wakes

“First-principles” simulations try to model
the entire wake without empirical inputs or
vortex-based method inputs

— Numerical methods are dissipative , 1 =" root
! - ¢ vortex

o vortex
! sheet

Historically, a very challenging task because :
of the differences in scales (tip vortex from a (Gray, 1955)
UHG60 rotor is ~1/300* Rotor Radius)

The hover helical vortex system is entirely
self-induced:

— Feedback between vortex strength and vortex system
dynamics — neutrally stable
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Scope

Several excellent survey articles that summarize
rotorcraft flow simulation efforts are available Iin
literature:

— McCroskey [1995]

— Srinivasan and Sankar [1994], Landgrebe [1994]
— Hariharan and Sankar [2000]

— Strawn and Caradonna [2005]

The present work is not intended to be an all-
inclusive survey of rotorcraft wake modeling. In this
paper, key technology enablers that make up
current-day capabilities are reviewed.

Results from the state-of-art, high-fidelity rotor-wake
hover simulations are reviewed and status assessed
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Mass-3ink BC

Body BC's
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Maszs-Sink BC

e® Structured, cylindrical, periodic (i.e., Srinivasan and
Baeder, Duque)

e Unstructured (i.e., Strawn and Barth)

® Second- /Third-order schemes:; wake structure
dissipated off rapidly



First-Principles Hover Enabler: (i)
ngh -Order Methods
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5th- /7th-order spatially-accurate
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First-Principles Hover Enabler: (ii)
Overset Methods

e Put grid points in the path of wake

e Overset methods: For rotor
Interactional problems (i.e.,
McCroskey, Duque, et al., Ahmed,
et al., Meakin, et al.)

e Overset + HO methods (i.e.,
Hariharan and Sankar) — Cartesian
background
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First-Principles Hover Enabler: (i)
Mesh Adaption/Refinement

Back View
Adapted
Initial
Top View
e S [k BV

Movement of a

Streamwise /
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Tip Vortex ‘G\ Y
rid-2 dapte
i
e Unstructured grid adaptive refinement of wake (i.e., Strawn and
Barth)

e Structured adaptive mesh refinement (i.e., Vasilescu, et al.)

e Overset vortex grids (i.e., Dietz, Hariharan )
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~irst-Principles Hover Enabler: (iv)
Distributed, Scalabe Adaptive Mesh

n
zefll lelllel It _f"‘f- A .j:ﬁ_ T T
i g i
H s
// = // |+
= |- |_— | —1
| 1 //
L— L—1
P | -1 /”/ //
- |+
4+ -4’1 /-'/ /./
/// //
] LT 1 __/’/
L1 L—1
| —1 -
4] L1 ]
///
/‘/ = |+
/—// -t L

e Overset adaptive mesh refinement to features (i.e., Meakin, Holst,
and Pulliam)

® Unsteady parallel AMR (i.e., Wissink, et al.) — refines AND de-refines
to provide grid points where required

e Parallel automated oversetting (i.e., Sitaraman, et al.) page-0



CREATE-AV Helios

Cartesian off-body
grids

— No skew, efficient

Fifth-order spatial
accuracy (off-body)

Flow-based
Cartesian grid
refinement

Automated overset
Infrastructure

~ NSU3D
(near-body solver)

| SAMARC

|| (off-body solver) |

AlAA-2012-0713: Capability Enhancements of the Helios v3.0 High-

Fidelity Rotorcraft Simulation Tools
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CREATE-AV Helios HBEL
Helios Helicopter Overset Simulations @ﬁ‘\

Dual Mesh Paradigm Adaptive Mesh Refinement Moving Body Overset

NSU3D

PUNDIT
domain connectivity

near-off body,

Fa

]

Unstructured near-body Rotor-fuselage and multi-rotor
cartesian off-body To resolve wake moving mesh support

CFD/CSD Coupling Advanced Software Infrastructure High Performance Computing
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R ‘ lfl | |f{ H l?‘|
RCAS and CAMRAD structural Python-based infrastructure readily Runs on HPC hardware with
dynamics and trim coupling supports addition of new software focus on parallel scalability
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Helios Results from Rotor in Hover

e Two-bladed Rotor, Caradonna and Tung
® Three-bladed Rotor, TRAM
e Six-bladed Rotor, RAH66

® Ducted Rotor
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Non-Adaptive Mesh Refinement (AMR)
Solution

1N

\

e \Wake captured to the
extent of finest grid
domain

e Near-body vortex
needs refinement
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DOD

Near-Body Grid Refinement HEC

Near-Body Grid — RO

w—velocity [NSU3D]

s \\f‘v'\fk\\\/“: 7
poRiearalE AP a An

025 03
Distance

Near-Body Grid — R1

b 014

0105

8

o
i

w—velocity [NSU3D]
&
§

g

2
&

® Near-body tip refinement -
Improves load predictions
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Wake of Rotor in Hover

5th-Order Cartesian, 18
cells/chord off-body

vortex
sheet

k. root
| Vortex

e Captures the tip vortex and wake sheet structure
e Predicted blade load of C; =0.0048 (experimental C; =0.0046)
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Wake of Rotor in Hover (AMR)

e Cartesian AMR resolves
the wake more efficiently
targeting the tip vortex
(fewer finest-grid cells)

e No further change in blade
loading
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Secondary Vortex Braids (AMR
Solution)

e Secondary
vortex braids
appear in the
far-wake

® No bearing on
the load
convergence

e Secondary
braid vorticity
associated
with instability
patterns when
far-wake
helical braids
come together

11
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Near-Ground Hover
Rotor at z=0.5R

e Flared-out vortex wake structure
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Rotor at z=1.25R g

e Flow-field tending towards OGE

solenoidal pattern (From Leishman, Helicopter Aerodynamics)
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® Toroidal vortex ring structure with secondary
braided circumferential structures
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TRAM Isolated Rotor

® Tilt Rotor Aeroacoustics Model (TRAM)

— Quarter-scale model V-22 Osprey
— Experiments at DNW (1998) and NASA Ames
(2000)
® Computational conditions:
— Rigid blade
— (g=14° collective, M

i,=0.625, Re1;;=2.1M
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Standalone Med NB mesh Fine-a NB mesh
unstructured 8L AMR OB mesh 8L AMR OB mesh

® Near-body and off-body refinement to get the wake
right

Page-21



Feature Detection Augmented with Richardson

Error

err = 10e-3

err = 10e-4

err = 10e-5

Figure of Merit Difference Mesh Points
Experiment 0.774 - --
err = 10e-3 0.760 -1.8% (+/- 0.4%) 9.6M
err = 10e-4 0.767 -0.9% (+/- 0.4%) 13.2M
err = 10e-5 0.768 -0.8% (+/- 0.2%) 14.2M
err = 10e-6 0.769 -0.6% (+/- 0.2%) 14.3M
no error 0.773 -0.1% (+/- 0.2%) 86M

Tightening
error
tolerance
improves the
computed FM

6X fewer
gridpoints
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Finest TRAM Wake

Figure of Merit Difference Mesh Points
Experiment 0.774 - --
Computation 0.773 -0.1% (+/- 0.2%) 86M

® Finest mesh resolution applied to all regions of swirling flow
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Capability: Anhedral Blade in Hover
RAH Comanche Hover

® Five- (5) bladed rotor:
Straight and improved
anhedral tip

® AED (Huntsville, AL)
ACRB blade solution
Issues inspired this
case

® Approximate RAH
anhedral
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MODERNIZATION PROGRAM

Grids

RAH Comanche Hover

ds

ds and AFLR volume gr

face gr

-wise sur

t

® Poin

iHlion/blade

. ~6m

(5) blades

® Five
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Fixed Off-Body Grid Solution
RAH Comanche Hover

® Straight and anhedral blade solutions ran well with
default settings

® Weak vortex system feeding the off-body



Aerodynamic Loads
RAH Comanche Hover

Collective Pitch =0

CT cQ FM
Baseline 0.0002627 0.000125 0.024
Anhedral 0.00020181 0.000145 0.014
Collective Pitch =10

CT cQ FM
Baseline 0.008365 0.0008873 0.609
Anhedral 0.009079 0.000979 0.624
Anhedral (Adaptive) 0.009281 0.000988 0.6397

® Correct trending — Anhedral improves hover efficiency at
operating collectives
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Capability: Ducted Fan
ARL Ducted Fan

® ARL (Aberdeen, MD)
conceptual design case

® Multi-component, close
proximity

® External/lnternal flow

® Point-wise/AFLR grids
for duct and rotor+hub
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Near-Body and Adapted Off-Body Grids
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QAT 2012 — Helios v3
ARL Ducted Fan

Tip path plane Separation

1 Duct
Bl | cading
-« edge

Flow
separation

2 :_:1_;_..\—__-‘,-.: -

=

From Martin & Tung

%
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Duct Vorticity Contours HEG
ARL Ducted Fan

Hub recirculation

A [ s

ip vortex structures

within near-body Wake sheets in off-
grids body




Ducted Rotor Tip Efficiency
ARL Ducted Fan Ducted Wake

Cp (Ducted Fan) Cp [NSU3D]

0.193 0.193

-0.776 -0.775

~15% more thrust
than non-ducted,
comparable to
Martin & Tung at
5%c tip clearance.




Concluding Thoughts

First-principles hover simulations without external
Inputs or vortex methods have become a practical
reality

® A combination of (i) High-order methods; (ii)

Oversetting; (ii) Cartesian framework in parallel; and
(iv) Scalable adaptive mesh refinement, such as in
Helios enables routine first-principles hover
computations

For certain rotor-blades in hover, challenges remain in
form of being able to resolve helical wake instability
physics correctly. Some future things to looks at:

— Resolve tip vortex core further accurately

— Explore mechanisms to damp-out braid instabilities while still resolving the
necessary part of the wake
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MODERNIZATION PROGRAM

Thanksl!....Questions?
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