First-Principles Hover Prediction Using CREATE-AV Helios

Nathan Hariharan Deputy Program Manager, CREATE-AV Patuxent River, MD

Mark Potsdam and Andy Wissink US Army AFDD, Moffett Field, CA

Benjamin Hallissy Quality Assurance, CREATE-AV Patuxent River, MD

NDIA Physics-Based Modeling Conference November 7, 2012 Denver, CO

HPC MODERNIZATION PROGRAM

Rotorcraft in Hover

Rotor wakes are largely dominated by the trailing

vortex system

UH-60 Black Hawk in hover

V-22 Osprey in hover

- The hover condition represents one of the true values of the helicopter
- A limiting design point in terms of power requirements

Why is "First-Principles" Simulation of Hover so Challenging?

- Rotary-wing vehicle aerodynamic loads are heavily influenced by their own vortical wakes
- "First-principles" simulations try to model the entire wake without empirical inputs or vortex-based method inputs
 - Numerical methods are dissipative
- Historically, a very challenging task because of the differences in scales (tip vortex from a UH60 rotor is ~1/300* Rotor Radius)
- The hover helical vortex system is entirely self-induced:
 - Feedback between vortex strength and vortex system dynamics – neutrally stable

(Gray, 1955)

HPC MODERNIZATION PROGRAM

Scope

- Several excellent survey articles that summarize rotorcraft flow simulation efforts are available in literature:
 - McCroskey [1995]
 - Srinivasan and Sankar [1994], Landgrebe [1994]
 - Hariharan and Sankar [2000]
 - Strawn and Caradonna [2005]
- The present work is not intended to be an allinclusive survey of rotorcraft wake modeling. In this paper, key technology enablers that make up current-day capabilities are reviewed.
- Results from the state-of-art, high-fidelity rotor-wake hover simulations are reviewed and status assessed

First-Principles Hover: Early/Mid-90s

- Structured, cylindrical, periodic (i.e., Srinivasan and Baeder, Duque)
- Unstructured (i.e., Strawn and Barth)
- Second-/Third-order schemes; wake structure dissipated off rapidly

First-Principles Hover Enabler: (i) **High-Order Methods**

- Hariharan and Sankar)
- 5th- /7th-order spatially-accurate **ENO/WENO** schemes; higher efficiency of wake capturing (5th-order 8-10 points, 7th-order 4–6 points)

First-Principles Hover Enabler: (ii)
Overset Methods

- Put grid points in the path of wake
- Overset methods: For rotor interactional problems (i.e., McCroskey, Duque, et al., Ahmed, et al., Meakin, et al.)
- Overset + HO methods (i.e., Hariharan and Sankar) – Cartesian background

First-Principles Hover Enabler: (iii) Mesh Adaption/Refinement

- Unstructured grid adaptive refinement of wake (i.e., Strawn and Barth)
- Structured adaptive mesh refinement (i.e., Vasilescu, et al.)
- Overset vortex grids (i.e., Dietz, Hariharan)

First-Principles Hover Enabler: (iv)
Distributed, Scalabe Adaptive Mesh

- Overset adaptive mesh refinement to features (i.e., Meakin, Holst, and Pulliam)
- Unsteady parallel AMR (i.e., Wissink, et al.) refines AND de-refines to provide grid points where required
- Parallel automated oversetting (i.e., Sitaraman, et al.)

CREATE-AV Helios

- Cartesian off-body grids
 - No skew, efficient
- Fifth-order spatial accuracy (off-body)
- Flow-based Cartesian grid refinement
- Automated overset infrastructure

AIAA-2012-0713: Capability Enhancements of the Helios v3.0 High-Fidelity Rotorcraft Simulation Tools

CREATE-AV Helios

Helios Helicopter Overset Simulations

Helios Results from Rotor in Hover

- Two-bladed Rotor, Caradonna and Tung
- Three-bladed Rotor, TRAM
- Six-bladed Rotor, RAH66
- Ducted Rotor

Non-Adaptive Mesh Refinement (AMR) Solution

Near-Body Grid Refinement

 Near-body tip refinement improves load predictions

Wake of Rotor in Hover

5th-Order Cartesian, 18 cells/chord off-body

Classical Schematic vortex sheet tip. vortex root: vortex

- Captures the tip vortex and wake sheet structure
- Predicted blade load of $C_T = 0.0048$ (experimental $C_T = 0.0046$)

Wake of Rotor in Hover (AMR)

- Cartesian AMR resolves the wake more efficiently targeting the tip vortex (fewer finest-grid cells)
- No further change in blade loading

Secondary Vortex Braids (AMR Solution)

- Secondary vortex braids appear in the far-wake
- No bearing on the load convergence
- Secondary braid vorticity associated with instability patterns when far-wake helical braids come together

Near-Ground Hover

Rotor at z=0.5R

Flared-out vortex wake structure

Rotor at z=1.25R

 Flow-field tending towards OGE solenoidal pattern

(From Leishman, Helicopter Aerodynamics)

Near-Ground Hover Vortex Pattern

 Toroidal vortex ring structure with secondary braided circumferential structures

TRAM Isolated Rotor

Tilt Rotor Aeroacoustics Model (TRAM)

- Quarter-scale model V-22 Osprey
- Experiments at DNW (1998) and NASA Ames (2000)

Computational conditions:

- Rigid blade
- q=14° collective, M_{tip} =0.625, Re_{Tip} =2.1M

Near-body rótor mesh: 9.3M nodes

Off-body finest-grid resolution: $\Delta x = 0.05c$

Wake of Rotor in Hover (AMR)

Near-body and off-body refinement to get the wake right

HPC MODERNIZATION PROGRAM

Feature Detection Augmented with Richardson

Error

$$err = 10e-3$$

err = 10e-4

err = 10e-5

err = 10e-6

	Figure of Merit	Difference	Mesh Points
Experiment	0.774	-	
err = 10e-3	0.760	-1.8% (+/- 0.4%)	9.6M
err = 10e-4	0.767	-0.9% (+/- 0.4%)	13.2M
err = 10e-5	0.768	-0.8% (+/- 0.2%)	14.2M
err = 10e-6	0.769	-0.6% (+/- 0.2%)	14.3M
no error	0.773	-0.1% (+/- 0.2%)	86M

Tightening error tolerance improves the computed FM

6X fewer gridpoints

Finest TRAM Wake

	Figure of Merit	Difference	Mesh Points
Experiment	0.774	-	
Computation	0.773	-0.1% (+/- 0.2%)	86M

Finest mesh resolution applied to all regions of swirling flow

Capability: Anhedral Blade in Hover

RAH Comanche Hover

- Five- (5) bladed rotor:
 Straight and improved anhedral tip
- AED (Huntsville, AL)
 ACRB blade solution
 issues inspired this
 case
- Approximate RAH anhedral

Grids RAH Comanche Hover

- Point-wise surface grids and AFLR volume grids
- Five (5) blades, ~6 million/blade

Fixed Off-Body Grid Solution RAH Comanche Hover

- Straight and anhedral blade solutions ran well with default settings
- Weak vortex system feeding the off-body

Aerodynamic Loads RAH Comanche Hover

Collective Pitch = 0			
	СТ	CQ	FM
Baseline	0.0002627	0.000125	0.024
Anhedral	0.00020181	0.000145	0.014

Collective Pitch =10			
	CT	CQ	FM
Baseline	0.008365	0.0008873	0.609
Anhedral	0.009079	0.000979	0.624
Anhedral (Adaptive)	0.009281	0.000988	0.6397

Correct trending – Anhedral improves hover efficiency at operating collectives

Capability: Ducted Fan ARL Ducted Fan

- ARL (Aberdeen, MD) conceptual design case
- Multi-component, close proximity
- External/Internal flow
- Point-wise/AFLR grids for duct and rotor+hub

Near-Body and Adapted Off-Body Grids

ARL Ducted Fan

HPC MODERNIZATION PROGRAM

QAT 2012 – Helios v3 ARL Ducted Fan

Duct Vorticity Contours ARL Ducted Fan

HPC MODERNIZATION PROGRAM

Ducted Rotor Tip Efficiency

ARL Ducted Fan

Ducted Wake

Concluding Thoughts

- First-principles hover simulations without external inputs or vortex methods have become a practical reality
- A combination of (i) High-order methods; (ii)
 Oversetting; (iii) Cartesian framework in parallel; and
 (iv) Scalable adaptive mesh refinement, such as in
 Helios enables routine first-principles hover
 computations
- For certain rotor-blades in hover, challenges remain in form of being able to resolve helical wake instability physics correctly. Some future things to looks at:
 - Resolve tip vortex core further accurately
 - Explore mechanisms to damp-out braid instabilities while still resolving the necessary part of the wake

