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 Rotor wakes are largely dominated by the trailing 
vortex system 
 
 
 
 
 
 

 The hover condition represents one of the true values 
of the helicopter 

 A limiting design point in terms of power requirements 

Rotorcraft in Hover 

V-22 Osprey in hover UH-60 Black Hawk in hover 
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(Gray, 1955) 

Why is “First-Principles” Simulation 
of Hover so Challenging? 
 Rotary-wing vehicle aerodynamic loads are 

heavily influenced by their own vortical 
wakes 

 “First-principles” simulations try to model 
the entire wake without empirical inputs or 
vortex-based method inputs 
– Numerical methods are dissipative 

 Historically, a very challenging task because 
of the differences in scales (tip vortex from a 
UH60 rotor is ~1/300* Rotor Radius) 

 The hover helical vortex system is entirely 
self-induced: 
– Feedback between vortex strength and vortex system 

dynamics – neutrally stable 
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Scope 

 Several excellent survey articles that summarize 
rotorcraft flow simulation efforts are available in 
literature:  
– McCroskey [1995] 
– Srinivasan and Sankar [1994], Landgrebe [1994] 
– Hariharan and Sankar [2000] 
– Strawn and Caradonna [2005]  

 The present work is not intended to be an all-
inclusive survey of rotorcraft wake modeling. In this 
paper, key technology enablers that make up 
current-day capabilities are reviewed. 

 Results from the state-of-art, high-fidelity rotor-wake 
hover simulations are reviewed and status assessed 
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First-Principles Hover: Early/Mid-90s 

 Structured, cylindrical, periodic (i.e., Srinivasan and 
Baeder, Duque) 

 Unstructured (i.e., Strawn and Barth) 

 Second- /Third-order schemes; wake structure 
dissipated off rapidly 
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First-Principles Hover Enabler: (i) 
High-Order Methods 

 Structured grid HO methods (i.e., 
Hariharan and Sankar) 

 5th- /7th-order spatially-accurate 
ENO/WENO schemes; higher efficiency 
of wake capturing (5th-order 8–10 points, 
7th-order 4–6 points) 
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First-Principles Hover Enabler: (ii) 
Overset Methods 

 Put grid points in the path of wake 

 Overset methods: For rotor 
interactional problems (i.e., 
McCroskey, Duque, et al., Ahmed, 
et al., Meakin, et al.) 

 Overset + HO methods (i.e., 
Hariharan and Sankar) – Cartesian 
background 
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First-Principles Hover Enabler: (iii) 
Mesh Adaption/Refinement 

 Unstructured grid adaptive refinement of wake (i.e., Strawn and 
Barth) 

 Structured adaptive mesh refinement (i.e., Vasilescu, et al.) 

 Overset vortex grids (i.e., Dietz, Hariharan ) 
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First-Principles Hover Enabler: (iv) 
Distributed, Scalabe Adaptive Mesh 
Refinement 

 Overset adaptive mesh refinement to features (i.e., Meakin, Holst, 
and Pulliam)  

 Unsteady parallel AMR (i.e., Wissink, et al.) – refines AND de-refines 
to provide grid points where required 

 Parallel automated oversetting (i.e., Sitaraman, et al.) 
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AIAA-2012-0713: Capability Enhancements of the Helios v3.0 High- 
Fidelity Rotorcraft Simulation Tools  

CREATE-AV Helios  

 Cartesian off-body 
grids  
– No skew, efficient  

 Fifth-order spatial 
accuracy (off-body) 

 Flow-based 
Cartesian grid 
refinement 

 Automated overset 
infrastructure 
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Dual Mesh Paradigm 

Unstructured near-body 
cartesian off-body 

CFD/CSD Coupling 

Adaptive Mesh Refinement 

To resolve wake 

RCAS and CAMRAD structural 
dynamics and trim coupling 

Advanced Software Infrastructure 

Python-based infrastructure readily 
supports addition of new software 

Helios Helicopter Overset Simulations 

High Performance Computing 

Runs on HPC hardware with 
focus on parallel scalability 

Rotor-fuselage and multi-rotor 
moving mesh support 

Moving Body Overset 

CREATE-AV Helios  
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Helios Results from Rotor in Hover 

 Two-bladed Rotor, Caradonna and Tung 

 Three-bladed Rotor, TRAM 

 Six-bladed Rotor, RAH66 

 Ducted Rotor 
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Non-Adaptive Mesh Refinement (AMR) 
Solution 

 Wake captured to the 
extent of finest grid 
domain 

 Near-body vortex 
needs refinement  
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Near-Body Grid – R0 

 

 

 

Near-Body Grid – R1 

 

 

 

Near-Body Grid Refinement 

 Near-body tip refinement 
improves load predictions  
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Wake of Rotor in Hover 
5th-Order Cartesian, 18 

cells/chord off-body Classical Schematic 

 Captures the tip vortex and wake sheet structure   

 Predicted blade load of CT =0.0048 (experimental CT =0.0046)  
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Wake of Rotor in Hover (AMR) 

 Cartesian AMR resolves 
the wake more efficiently 
targeting the tip vortex 
(fewer finest-grid cells) 

 No further change in blade 
loading 
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Secondary Vortex Braids (AMR 
Solution) 
 Secondary 

vortex braids 
appear in the 
far-wake  

 No bearing on 
the load 
convergence 

 Secondary  
braid vorticity 
associated 
with instability 
patterns when 
far-wake 
helical braids 
come together 
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Near-Ground Hover 
Rotor at z=0.5R 
 Flared-out vortex wake structure 

Rotor at z=1.25R 
 Flow-field tending towards OGE 

solenoidal pattern  (From Leishman, Helicopter Aerodynamics) 
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Near-Ground Hover Vortex Pattern 

 Toroidal vortex ring structure with secondary 
braided circumferential structures 
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 Tilt Rotor Aeroacoustics Model (TRAM)  
– Quarter-scale model V-22 Osprey 
– Experiments at DNW (1998) and NASA Ames 

(2000) 

 Computational conditions: 
– Rigid blade 
– q=14° collective, Mtip=0.625, ReTip=2.1M 

TRAM Isolated Rotor 
 

Near-body rotor mesh: 9.3M nodes 

Off-body finest-grid resolution: Δx = 0.05c 
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Wake of Rotor in Hover (AMR) 

 Near-body and off-body refinement to get the wake 
right 
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Feature Detection Augmented with Richardson 
Error 

err = 10e-3 err = 10e-4 err = 10e-5 err = 10e-6 

Figure of Merit Difference Mesh Points 

Experiment 0.774 - -- 

err = 10e-3 0.760 -1.8% (+/- 0.4%) 9.6M 

err = 10e-4 0.767 -0.9% (+/- 0.4%) 13.2M 

err = 10e-5 0.768 -0.8% (+/- 0.2%) 14.2M 

err = 10e-6 0.769 -0.6% (+/- 0.2%) 14.3M 

no error 0.773 -0.1% (+/- 0.2%) 86M 
6X fewer 
gridpoints 

Tightening 
error 

tolerance 
improves the 
computed FM 
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Figure of Merit Difference Mesh Points 
Experiment 0.774 - -- 
Computation 0.773 -0.1% (+/- 0.2%) 86M 

 Finest mesh resolution applied to all regions of swirling flow 

Finest TRAM Wake 
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 Five- (5) bladed rotor: 
Straight and improved 
anhedral tip 

 AED (Huntsville, AL) 
ACRB blade solution 
issues inspired this 
case 

 Approximate RAH 
anhedral  
 

Capability: Anhedral Blade in Hover 
RAH Comanche Hover 
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 Point-wise surface grids and AFLR volume grids 
 Five (5) blades, ~6 million/blade 

Grids 
RAH Comanche Hover 
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 Straight and anhedral blade solutions ran well with 
default settings 

 Weak vortex system feeding the off-body 

Fixed Off-Body Grid Solution 
RAH Comanche Hover 
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 Correct trending – Anhedral improves hover efficiency at 
operating collectives  

Aerodynamic Loads 
 RAH Comanche Hover 

Collective Pitch = 0
CT CQ FM

Baseline 0.0002627 0.000125 0.024
Anhedral 0.00020181 0.000145 0.014

Collective Pitch =10
CT CQ FM

Baseline 0.008365 0.0008873 0.609
Anhedral 0.009079 0.000979 0.624
Anhedral (Adaptive) 0.009281 0.000988 0.6397
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 ARL (Aberdeen, MD) 
conceptual design case 

 Multi-component, close 
proximity 

 External/Internal flow 
 Point-wise/AFLR grids 

for duct and rotor+hub 

Capability: Ducted Fan 
ARL Ducted Fan 
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Near-Body and Adapted Off-Body Grids 
 ARL Ducted Fan  
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QAT 2012 – Helios v3 
 ARL Ducted Fan  

Tip path plane Separation 

From Martin & Tung 
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Duct Vorticity Contours 
 ARL Ducted Fan  

Hub recirculation 

Tip vortex structures 
within near-body 
grids 

Wake sheets in off-
body 
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Ducted Rotor Tip Efficiency 
 ARL Ducted Fan Ducted Wake 

~15% more thrust 
than non-ducted, 
comparable to 
Martin & Tung at 
5%c tip clearance. 
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Concluding Thoughts  
 First-principles hover simulations without external 

inputs or vortex methods have become a practical 
reality 

 A combination of (i) High-order methods; (ii) 
Oversetting; (iii) Cartesian framework in parallel; and 
(iv) Scalable adaptive mesh refinement, such as in 
Helios enables routine first-principles hover 
computations 

 For certain rotor-blades in hover, challenges remain in 
form of being able to resolve helical wake instability 
physics correctly. Some future things to looks at: 
– Resolve tip vortex core further accurately 
– Explore mechanisms to damp-out braid instabilities while still resolving the 

necessary part of the wake 
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