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Project Guiding Principle ) ..

i

= The SIERRA Mechanics Integrated Code (IC) tool suite is being

developed under the Department of Energy’s (DOE) Advanced
Scientific Computing (ASC) program to support Science-based
Stockpile Stewardship (SBSS) at Sandia National Laboratories

Other aspects of SBSS include:

= Physics and engineering model development, creation of high quality
validation data sets, algorithm development and Uncertainty
Quantification (UQ)
The guiding principle for this combined project is to provide a
predictive capability for high consequence accident scenarios

The ASC project deliverables are managed by Milestone
efforts across the fully supported ASC application space




Abnormal/Thermal Environment .

= Hydrocarbon JP-8 10 m fire = Aluminum propellant fire

U Lead experimentalists: Jim Nakos O Lead experimentalists: Walt Gill





Simulation Capability ) .
e
= Hydrocarbon JP-8 pool fire = Aluminum propellant fire

Time: 0.00

L Multi-physics pool fire simulation L Multi-physics propellant fire
simulation
\
e
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V&YV, From Simple to Complex )
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[ Outdoor accident
scenario

= 00000

R 0 2 m methane
AsC [ 2 meter JP-8 pool fire validation O Downward AL burn





Generalized Design for General Appst)t.

O Contaminant transport

- 0 Advanced sliding mesh algorithms for

wind energy applications N
H,;: O Operator split and monolithic FSI EY app @J X






Discretization and Coupling

h
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= A variety of code discretizations have been implemented and

verified using the Method of Manufactured Solutions

= Discretizations include:
= Vertex centered Control Volume Methods
= Cell centered Control Volume Methods
= Finite Element Methods

= Couplings range from
= explicit pressure projection
= operator split pressure projection
= monolithic (fully coupled)

challenging
\ . . . . . .
zA®  Algorithms? Fully explicit, operator split, monolithic?

O Variable density MMS;
Ux (T) density (B)

= Exascale promises to be disruptive, expensive and extremely
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CVFEM Discretization ) 2,

= The core discretization used in the low Mach code base has
been the Control Volume Finite Element Method, CVFEM

= An elemental basis is defined from which interpolation and
gradients within the element are determined

= The test function is defined to be piece-wise constant

= This method can best be described as a Petrov-Galerkin
method
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= The canonical 27-point stencil is recovered
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Sandia

Finite Element Discretization LU
e

= (Classic Equal Order = Ramifications for the FEM
Interpolation with explicit method:
pressure stabilization = Canonical 27-point stencil for

= Monolithic or approximate structured hex

pressure projection couplings Full elemental diffusion operator

(issues with diffusion operator

exist monotonicity exists for aspect
= Pressure stabilization can be ratios greater than sqrt(2))
similar to segregated = Galerkin method not regularly
approach (znd or 4th Order) or used due to the need for
PSPG residual-based stabilization thus
making most implementations a
= Advection stabilization Petrov-Galerkin method
obtained via SUPG 5 = VMS foundation replaces classic
/\ W=w+7Tu, —w SUPG and PSPG approach
AsC ox, 10
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Edge-Based Discretization ) i,
e ————————

= |n this method, the dual
mesh is defined to establish
geometric values at the edge
midpoint (area vector) and

node (volume)

2
& Subcontrol volume
® @  Finite Elements and Nodes

O O Finite Volumes and Faces

X Integration Point

% Quadrature points for edge-based scheme

AsC

= Ramifications for the edge-
based finite volume
(EBFV)structure are as follows:
= Reduced stencil (27-point to 7-

point for structured hex)

Simple L/R data structure allows
for simple interpolation and
orthogonal gradient
contributions

Lack of elemental basis requires
a diffusion operator in terms of
orthogonal to the edge and non-
orthogonal correction that
requires projected nodal

gradients
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Error Tradeoff
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= Error disparity on “nice” mesh for a Steady Taylor Vortex

MMS for each schemes are comparable

= QOther attributes of the scheme, i.e., speed, robustness,
time to solution, etc. are far more significant

e b i = e 5L

e ! : = W

EI Ste

%

AsC

Error

— — — Second Order Reference
——=—— Edge

———— CVFEM

HFEM -

0.4 0.6
Normalized Mesh Spacing

ay TV; u_vel colored by pressure [ Loo norms for three discretizations

> 1 Order of
magnitude
speed
disparity
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Discretization Error vs Resolution  @&s.

= Common Value System: The best numerical scheme is the
one in which errors for a canonical code verification suite
are smallest

= However, oftentimes the ability to resolve a physics scale is
of prime importance
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Coupling ) .

= The traditional low Mach = QOther approaches are
algorithm is an approximate possible including monolithic
projection algorithm in which and flavors of operator split
splitting and pressure = |n general, there exists a
stabilization terms exist trade space between time
| 4 G | u scale of interest and coupling
Do | approach
~ g 7 Algorithm Speed factor
f ]+ ([_AT)G(pmm _apnﬂ/z) uvwp; Imp/Imp 3.4x
| b T(L_ﬁDg)pn—l/Z uvw_p; Imp;/Imp 1.2X
B B uvw_p; Imp/Exp 0.6x
= o and [} define incremental u_v._w_p: Imp/imp 1.0x
A pressure/pressure-free and UVW_p: EXp/EXp 0.7x
Asc__2nd and 4t pressure stab 14



Open Literature Works () =

e =——  [Re 45k turbulent back step
e

 Domino; approximate pressure
Fig. 18. Periodic evolution of streamlines from{=3.04 stot=3.11 s. pI’OjeCtIOI’] with KE preserving

operators (8000k tri elements)
U Hachem et al. JCP 229:23, 2010;
\ monolithic stabilized FEM (40k tri)
i
A5C 15




Performance Problem of Interest  @/&s.

= The three dimensional test problem of interest that has
been used for this scaling study effort is a turbulent open
jet (Re = 6,600) of Abdel et al. (1997)

 Re = 6,600 turbulent
L Re = 6,600 3D mesh jet (volume rendered O 2D plane (mixture

unstructured hex mesh mixture fraction fraction)
field)




Physics of Interest )

= The variable density, low Mach set of equations are solved in
which the acoustics have been filtered, thereby, allowing

density to be a function of the spatially constant, possible
variable in time thermodynamic pressure

P +8,5£2 L =0

or  ox, DOFs=u,,u,1u,p,z

opz  opi,Z _ 0 [)Dﬁ— . Turbulence closure models
o ox, Ox, ox, required for turbulent

55 Opil i 5 5 diffusive flux vector
I e i p+_(f_y__fuiuj)+()5_pf)gl_ and subgrid stress tensor

ot ox, ox,  ox,
_ 1
L= z 1-2) O Regardless of coupling techniques
- +—— (monolithic or pressure-projection) an
/\‘ p(Z=0) p(z=1) elliptic pressure system is created

AsC 17




Evaluation of Current Code Timings [E=.

= Consider a typical mixture fraction-based LES for a transient

simulation

Sum of Time Column Lahelsn

Row Labels nt':nntinuit*,r Mixture Fraction X Momentum Y Momentum Z Momentum Grand Total
Alloc LinSys 0.97 0.82 0.85 2.63
Initial Guess 2.01 4.08 4.60 4.59 4.60 22,88
Initialize 0.85 D.66 0.71 0.66 0.66 3.53
Load BC 0.00 0.04 0.10 0.09 0.09 0.32
Load Complete 8.94 9.47 9.62 9.39 9.49 46.89
Load Constraint 0.00 0.04 0.10 0.09 0.08 0.31
Load Contrib. 100.60 97.40 101.00 100.40 101.70 501.10
Reset 0.04 1.11 1.13 1.13 0.83 435
Scatter 4.18 3.44 3.69 3.78 3.84 18.93
Set RHS 2.92 2.92 2.89 8.73
Solve 306.10 22.22 18.24 18.17 18.78 383.51

Grand Total

\ O Solve and assembly time dominates

Z\
AsC 18




Possible Bottlenecks to Evaluate (.

Code abstractions for the purpose of code generality is good,
right?

Trilinos Algorithms
S
App Code ————— .

0 /\ =1(010 (1] ]}
FEI

Cache
efficiency

scatter | aLHS/aRHS




New Fast Gathers/Scatters ) £,

= New gathers/scatters have fewer instructions, fewer memory
hops and fewer cache misses. Gathers dropped from 10s to

<1ls
Call Stack CPU Timew CPU Time:Total
=sierra::Acon::UnitMech::solve 0s 44.507s
=sierra::Acon::UnitMech::assemble 0s 24.370s
P stk::diag::Timer:: Timer 0s 0.010s
=sierra::Eqns::LinearSystem::load_contributions 0s 24.070s
P sierra::Fmwk::WorksetAlgorithm: :execute Os 4.343s
=sierra::Acon::ScalarEdgeSolverWs: :execute 0s 16.012s
<sierra: :Fmwk: :WorksetAlgorithm::execute 0s 16.012s
“sierra::Fmwk: :WorksetAlgorithm: :drive_workset 0.060s 16.012s
~ sierra:: Acon::ScalarEdgeSolverWs: :apply
P sierra::Eqns::LinearSystem::apply_coefficients 1.808s 12.084s
0 _edge k’ 1.498s 1.498s
sierra::Acon::GatheredData<double>::gather_edge_averaged_data 0.937s 0.937s
sierra::Acon::Acon_EgnsLinearSystem::apply_coefficients 0.080s 0.080s
nse3d_ 0.050s 0.050s
sierra::Diag::Trace::Trace 0.010s 0.010s
A
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Edge-based Timing History )

= History of Edge-based timing compared to Element-based
scheme for the mixture fraction-based open jet simulation
(17 million element; 128 core)

/ [ Elem
180 = CVFEM code base
160 -/

O Edge

140 Vv

g 5 ol = EBVC code base
120 - Dtlma elem ~A4x Q oldML
100 -/

= Default ML

80 -/

[ O nML
60 - = ML settings from 2008
w0 ¥ |

l QG
20 -/
| — = Fast gather
N [ noRes
\QO <<(9 2 <<‘7

O\b &4& e/O‘ &g,/ Q@\' (\o“g’ ®\<,<(° = No reset of cont equation

\e,@/ Q7 %Qo « 27 &7 N dFS
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Scaling Studies )

= Cielo scaling studies for mixture fraction-based turbulent
open jet problem (Re=6,600)
= Sequence of meshes:
= R3(17.5 million elements; 64 — 4,096 cores)
= R4 (140 million elements; 512 — 16,384 cores)
= R5(1.12 billion elements; 4,096 — 65,536 cores)
= Linear Solve options
= Continuity: GMRES/ML
= Scalars: GMRES/SGS
= Element-based algorithmic studies: R3 —R5
= |nternal code name “Fuego”

= Edge-based algorithmic studies: R4
\ = Global ID size impediment due to signed int limitation
el ¥ " Internal code name “Conchas” 22




Cielo Details ) .
e

= Cielo; a NNSA DOE resource ~1.37 petaflop

" Cray-based machine (XE6) built in Spring of 2010

= 2 GB per core
= Cray Gemini high-speed interconnect

= PGI, Cray, Intel and GNU compiler suites

= Design, procurement and deployment were accomplished by
the NNSA’s New Mexico Alliance for Computing at Extreme
Scale (ACES)

= Joint partnership between Los Alamos National Laboratory and Sandia
National Laboratories




ML Algorithmic Scaling Performancel® .

Strong Scaling for R5 w/ Fuego VOTD :’;’:13:05;13;)"3 f‘::'f F:*(':_;’; ";é ;”f@)’OTD)
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R5 Element-based Strong Scaling .

Strong Scaling for R5 w/ Fuego VOTD Strong Scaling for R5 w/ Fuego VOTD
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R3-R5 Element-based Weak Scaling MEz.

Weak Scaling for R3-R5 w/ Fuego VOTD . .
(20120312) on Cielo (68,000 elem/core) J Time per code normalized by 256-
6.00 core simulation time
O Scaling of overall matrix assembly is
/ . . .
& 500 / in need of improvement as ideal
Q .
~ 4.00 scaling is expected
£ / . _ .
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Resolving Matrix Assembly Scaling @&.

= Matrix assembly is expected to be optimal (close)

~256 elem/proc _
1400 l 2000 elem/procl
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Conclusions ) i,

= Strong and weak scaling studies have been performed on
meshes ranging from 17 million to 1.12 billion elements on
core counts up to 65,536

= Various code design principles have been evaluated including
software abstractions designed for the purposes of code
generality

= Evaluated three discretizations with a variety of coupling
paradigms to define optimal scheme for a typical LES
application space

= Edge-based low Mach discretization has been shown to be
second order accurate and almost ~4x faster than the current
element-based approximate projection method

N
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