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Presentation Overview 

 DOE’s ASC Project Guiding Principle 

 Typical LES Application with Physics Description 

 V&V Principle 

 Discretization, Algorithmic Behavior and Coupling Approaches 

 Performance Results 

 Summary of Accomplishments 

 Conclusion 
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Project Guiding Principle 

 The SIERRA Mechanics Integrated Code (IC) tool suite is being 
developed under the Department of Energy’s (DOE) Advanced 
Scientific Computing (ASC) program to support Science-based 
Stockpile Stewardship (SBSS) at Sandia National Laboratories 

 Other aspects of SBSS include: 
 Physics and engineering model development, creation of high quality 

validation data sets, algorithm development and Uncertainty 
Quantification (UQ) 

 The guiding principle for this combined project is to provide a 
predictive capability for high consequence accident scenarios 

 The ASC project deliverables are managed by Milestone 
efforts across the fully supported ASC application space 



 Hydrocarbon JP-8 10 m fire 

Abnormal/Thermal Environment 

 Aluminum propellant fire 

 Lead experimentalists: Jim Nakos  Lead experimentalists: Walt Gill 
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 Hydrocarbon JP-8 pool fire 

Simulation Capability 

 Aluminum propellant fire 

 Multi-physics pool fire simulation  Multi-physics propellant fire 
simulation 
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V&V, From Simple to Complex 

 CHT  PMR/HC 

 2 meter JP-8 pool fire validation 

 Outdoor accident 
scenario 

 2 m methane 
 Downward AL burn 




Generalized Design for General Apps 

 Contaminant transport 

 Advanced sliding mesh algorithms for 
wind energy applications 

 Operator split and monolithic FSI 





 A variety of code discretizations have been implemented and 
verified using the Method of Manufactured Solutions 

 Discretizations include: 
 Vertex centered Control Volume Methods 

 Cell centered Control Volume Methods 

 Finite Element Methods 

 Couplings range from  
 explicit pressure projection 

 operator split pressure projection 

 monolithic (fully coupled) 

 Exascale promises to be disruptive, expensive and extremely 
challenging 

 Algorithms? Fully explicit, operator split, monolithic? 

Discretization and Coupling 
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 Variable density MMS;   
Ux (T) density (B)  



 The core discretization used in the low Mach code base has 
been the Control Volume Finite Element Method, CVFEM 

 An elemental basis is defined from which interpolation and 
gradients within the element are determined 

 The test function is defined to be piece-wise constant 

 This method can best be described as a Petrov-Galerkin 
method 

 The canonical 27-point stencil is recovered 

CVFEM Discretization 
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 Classic Equal Order 
Interpolation with explicit 
pressure stabilization 

 Monolithic or approximate 
pressure projection couplings 
exist 

 Pressure stabilization can be 
similar to segregated 
approach (2nd or 4th order) or 
PSPG 

 Advection stabilization 
obtained via SUPG 

Finite Element Discretization 
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 Ramifications for the FEM 
method: 
 Canonical 27-point stencil for 

structured hex 

 Full elemental diffusion operator 
(issues with diffusion operator 
monotonicity exists for aspect 
ratios greater than sqrt(2)) 

 Galerkin method not regularly 
used due to the need for 
residual-based stabilization thus 
making most implementations a 
Petrov-Galerkin method 

 VMS foundation replaces classic 
SUPG and PSPG approach 



 In this method, the dual 
mesh is defined to establish 
geometric values at the edge 
midpoint (area vector) and 
node (volume) 

Edge-Based Discretization 
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 Quadrature points for edge-based scheme 

 Ramifications for the edge-
based finite volume 
(EBFV)structure are as follows: 
 Reduced stencil (27-point to 7-

point for structured hex) 

 Simple L/R data structure allows 
for simple interpolation and 
orthogonal gradient 
contributions 

 Lack of elemental basis requires 
a diffusion operator in terms of 
orthogonal to the edge and non-
orthogonal correction that 
requires projected nodal 
gradients 



 Error disparity on “nice” mesh for a Steady Taylor Vortex 
MMS for each schemes are comparable 

 Other attributes of the scheme, i.e., speed, robustness, 
time to solution, etc. are far more significant 

Error Tradeoff 

12  Steady TV; u_vel colored by pressure  Loo norms for three discretizations 

> 1 Order of 
magnitude 
speed 
disparity 



 Common Value System: The best numerical scheme is the 
one in which errors for a canonical code verification suite 
are smallest 

 However, oftentimes the ability to resolve a physics scale is 
of prime importance 

Discretization Error vs Resolution 
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 Fire instability 101 
 Core collapse as a 
Function of mesh resolution 

 Data comparison 



 The traditional low Mach 
algorithm is an approximate 
projection algorithm in which 
splitting and pressure 
stabilization terms exist 

 

 

 

 

 

 α and β define incremental 
pressure/pressure-free and 
2nd and 4th pressure stab 

 

Coupling 
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 Other approaches are 
possible including monolithic 
and flavors of operator split 

 In general, there exists a 
trade space between time 
scale of interest and coupling 
approach 

Algorithm Speed factor  
uvwp; Imp/Imp 3.4x 
uvw_p; Imp;/Imp 1.2x 
uvw_p; Imp/Exp 0.6x 
u_v_w_p; Imp/Imp 1.0x 
uvw_p; Exp/Exp 0.7x 



Open Literature Works 
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 Hachem et al. JCP 229:23, 2010; 
monolithic stabilized FEM (40k tri) 

 Domino; approximate pressure 
projection with KE preserving 
operators (8000k tri elements) 

Re 45k turbulent back step 



 The three dimensional test problem of interest that has 
been used for this scaling study effort is a turbulent open 
jet (Re = 6,600) of Abdel et al. (1997) 

Performance Problem of Interest 

16 

 Re = 6,600 3D mesh 
unstructured hex mesh 

 Re = 6,600 turbulent 
jet (volume rendered 
mixture fraction 
field) 

 2D plane (mixture 
fraction) 



     

     

Physics of Interest 

 The variable density, low Mach set of equations are solved in 
which the acoustics have been filtered, thereby, allowing 
density to be a function of the spatially constant, possible 
variable in time thermodynamic pressure 
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Turbulence closure models 
required for turbulent  
diffusive flux vector  
and subgrid stress tensor 

 Regardless of coupling techniques 
(monolithic or pressure-projection) an 
elliptic pressure system is created 



Evaluation of Current Code Timings 

 Consider a typical mixture fraction-based LES for a transient 
simulation 

 Solve and assembly time dominates 
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Hypre 

 Algorithms 

Code abstractions for the purpose of code generality is good, 
right? 

register_algorithms() 

register_ws_algorithms() 

register_fields() 

WS 
Algorithms 

Possible Bottlenecks to Evaluate 
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WS 
Algorithms 

App Code 

aLHS/aRHS 

FEI PetSci 

Cache  
efficiency 

gather 
register_physics 

() 

Algorithms 

scatter 

FETI 

solve() 

Trilinos 



New Fast Gathers/Scatters 

 New gathers/scatters have fewer instructions, fewer memory 
hops and fewer cache misses. Gathers dropped from 10s to 
<1 s 

 Total “solve” time down from 75s to 44s 
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 History of Edge-based timing compared to Element-based 
scheme for the mixture fraction-based open jet simulation 
(17 million element; 128 core) 

21 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 
 Elem 

 CVFEM code base 
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 nML 

 ML settings from 2008 
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Edge-based Timing History 

~4x Optimal elem 



Scaling Studies 

 Cielo scaling studies for mixture fraction-based turbulent 
open jet problem (Re=6,600) 

 Sequence of meshes: 
 R3 (17.5 million elements; 64 – 4,096 cores) 
 R4 (140 million elements; 512 – 16,384 cores) 
 R5 (1.12 billion elements; 4,096 – 65,536 cores) 

 Linear Solve options 
 Continuity: GMRES/ML 
 Scalars: GMRES/SGS 

 Element-based algorithmic studies: R3 – R5 
 Internal code name “Fuego” 

 Edge-based algorithmic studies: R4 
 Global ID size impediment due to signed int limitation 
 Internal code name “Conchas” 22 



Cielo Details 

 Cielo; a NNSA DOE resource ~1.37 petaflop 

 Cray-based machine (XE6) built in Spring of 2010 
 2 GB per core 

 Cray Gemini high-speed interconnect 

 PGI, Cray, Intel and GNU compiler suites 

 Design, procurement and deployment were accomplished by 
the NNSA’s New Mexico Alliance for Computing at Extreme 
Scale (ACES) 
 Joint partnership between Los Alamos National Laboratory and Sandia 

National Laboratories 

23 



 Strong scaling for R5 mesh  Weak scaling 

ML Algorithmic Scaling Performance 

24 



R5 Element-based Strong Scaling 

 Base for speed up is 4096 cores  Time per core 
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R3-R5 Element-based Weak Scaling 

 Time per code normalized by 256-
core simulation time 

 Scaling of overall matrix assembly is 
in need of improvement as ideal 
scaling is expected 

 Matrix solves also are non-optimal 

 Performance enhancement 26 



Resolving Matrix Assembly Scaling 
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 Matrix assembly is expected to be optimal (close) 
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 Strong scaling for R2 mesh; FEI 

~256 elem/proc 

 Strong scaling for R5 mesh; non-FEI 

~2000 elem/proc 



Conclusions 

 Strong and weak scaling studies have been performed on 
meshes ranging from 17 million to 1.12 billion elements on 
core counts up to 65,536 

 Various code design principles have been evaluated including 
software abstractions designed for the purposes of code 
generality 

 Evaluated three discretizations with a variety of coupling 
paradigms to define optimal scheme for a typical LES 
application space 

 Edge-based low Mach discretization has been shown to be 
second order accurate and almost ~4x faster than the current 
element-based approximate projection method 
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