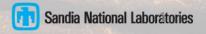
Uncertainty Quantification and Validation of Equipment Response to Underwater Shock Loading

Ken Hu, Dave Manko, and John Red-Horse Sandia National Laboratories


Thomas Paez – Thomas Paez Consulting

National Defense Industrial Association: Physics-Based

Modeling

November 7, 2012

Outline

- Overview of Full Ship Shock Trial Alternative program
- Verification and Validation at Sandia
- Validation approach for the FSST Alternative
- Comments/ Path forward

Full Ship Shock Trials (FSST)

- Manned ships subjected to controlled, Underwater Explosions (UNDEX) while at sea
- Requirement for qualification of a class of ship

FSST Alternative Program

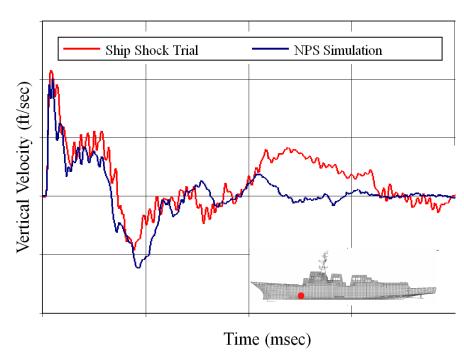
- Integrated Product Team formed to develop an FSST Alternative using Airguns instead of UNDEX
- Modeling & Simulation working group lead by NSWC Carderock Survivability and Weapons Effect Division
 - Dr. Thomas Moyer
 - Chris Van Valkenburgh

 "To evaluate the ability of airguns to induce failures and cause damage to shipboard equipment items and systems in a manner similar to UNDEX at <u>Shock</u> <u>Trial levels"</u>

FSST Alternative

- May be feasible to replace FSST with more controlled, smaller scale testing w/ Airguns
- Advantages:
 - Lower Cost
 - Less environmental impact
- Must still assess survivability
- Determine feasibility using Modeling & Simulation

Airgun Loading Simulation



Must establish credibility of M&S predictions

M&S Alone is Not Enough

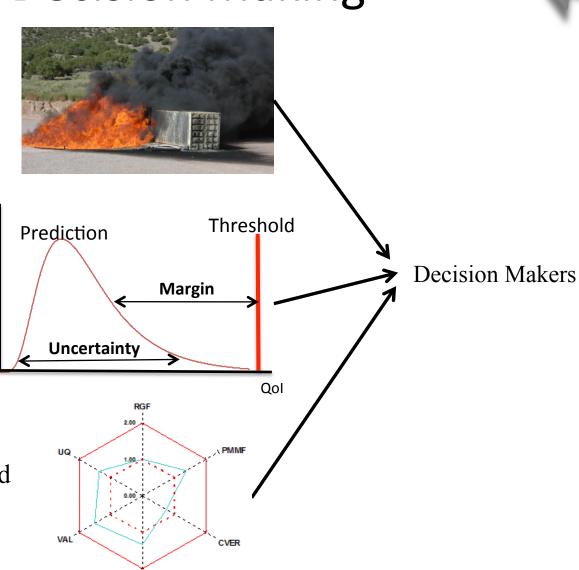
http://www.nps.edu/research/Documents/SVCL web sanitized.ppt

- Compare ship response
 - Test vs. simulation
- Visual comparisons≠ validation
- Are differences important?
- How to deal with
 - Variability
 - Uncertainty
 - Errors

Definitions

- Verification "Are we solving the equations correctly?"
 - Correctness of implemented <u>mathematical algorithms</u>.
- Validation "Are we solving the right equations?"
 - Correctness of <u>physical models</u> and sufficiency for the application.
- Uncertainty Quantification (UQ):
 - Statistical propagation of uncertainty through a simulation model, and <u>statistical interpretation</u> of model response.

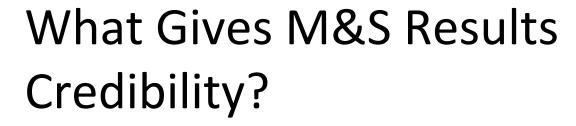
Risk Informed Decision Making


Testing of high consequence system

Testing + Simulations

→ Quantified Margins
and Uncertainties
(QMU)

Credibility That is Assessed and Communicated → PCMM



- Underground testing used to test weapon effects
- M&S replaced underground testing
- Must establish credibility in all aspects of prediction
 - Model Development
 - Uncertainty Quantification (UQ)
 - Verification and Validation (V&V)
- Must effectively communicate the credibility
 - Predictive Capability Maturity Model (PCMM)

Seven categories of PCMM

RGF: Representation and geometric fidelity

M&S

PMMF: Physics and material model fidelity <

CVER: Code verification

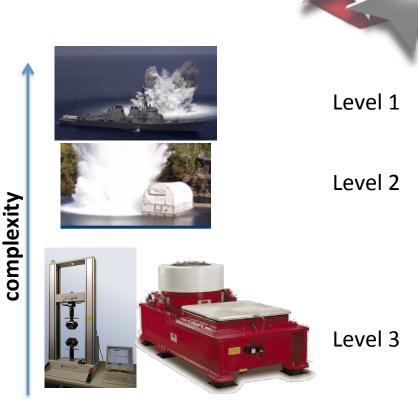
SVER: Solution verification

VAL: Validation

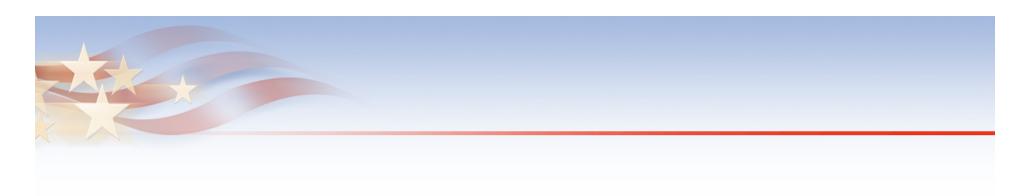
Validation

UQ: Uncertainty quantification

— UQ


Documentation and archiving

Key idea: Gather wide range of evidence on all categories


V&V Hierarchy

- Cannot run every test and all simulations
- Gather V&V evidence at many levels of complexity
- Build confidence in M&S capability at all levels
 - Calibrate models to test data
 - Validate predictions

→ Predictions + uncertainty and credibility estimates

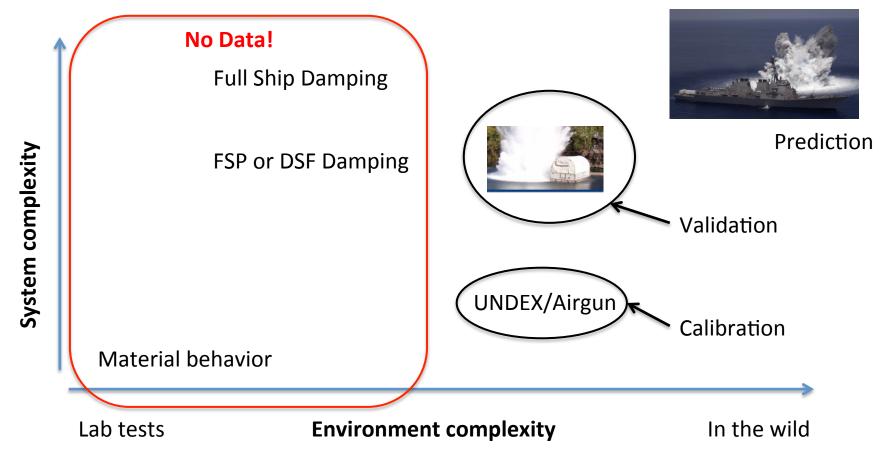
FSSTA Validation Process

FSST Alternative — Goals

- End goal: Validate models in order to compare effects of UNDEX and airguns on a full ship
- Full ship models very complex, data is limited
- FY12 Goal: Demonstrate procedures for validation of models *for the purpose of* comparison of UNDEX vs. airgun effects
 - Use simpler test cases
 - Floating Shock Platform (FSP)
 - Deck Simulator Fixture (DSF) attached to FSP

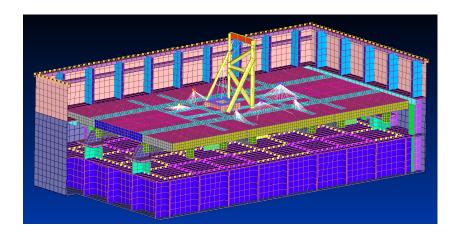
Validation Checklist

- Use hierarchy to make best use of data
- Define Quantities of Interest, derived from responses
- Identify and characterize sources of uncertainty
 - Both physical sources and modeling sources
- Propagate effect of uncertainty to simulation responses (UQ)
- Compare Quantities of Interest from test and simulation (Validation)


Tests

- UNDEX loading on FSP, FSP+DSF
 - Validate combined UNDEX, FSP, DSF models
- Underwater Airgun shots
 - Calibrate Airgun model (Weidlinger Associates)
- Airgun loading on FSP, FSP+DSF
 - Validate combined Airgun, FSP, DSF models
- No data for UNDEX shots models already exist
- No data on FSP, FSP+DSF with simpler loading

Validation Approach for FSST Alternative

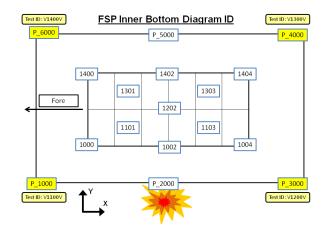

Strategy limited by available data

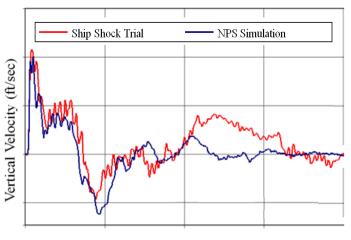
Codes & Models

- Gemini
 - Hydrocode
 - NSWC Indian Head

- SIERRA Mechanics –
 Salinas
 - Structural Dynamics
 - Sandia National Labs

Integrated into Navy Enhanced Sierra Mechanics (NESM)

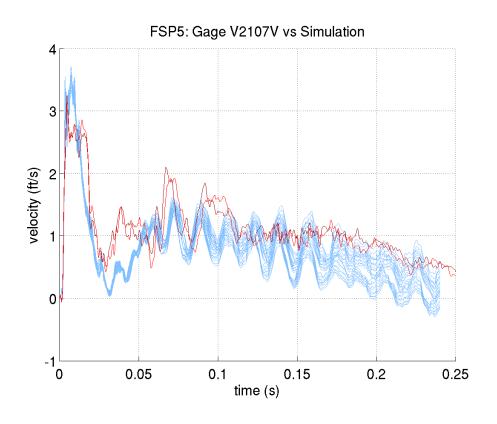

Test Data / Model Responses


Tests

- Gages (velocity / acceleration)
- Several locations

M&S

- Displacement, velocity, acceleration response
- Match location of gages


Time (msec)

http://www.nps.edu/research/Documents/ SVCL web sanitized.ppt

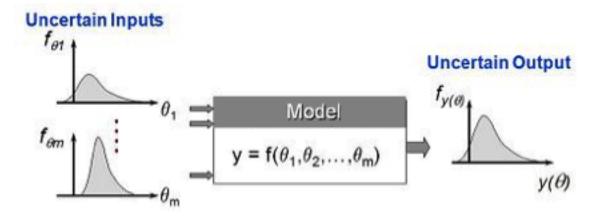
Quantities of Interest

- Response time history
- What features are important?
- Reduce information content to a few scalar values
- End goal prediction of damage potential

Proposed Qol's

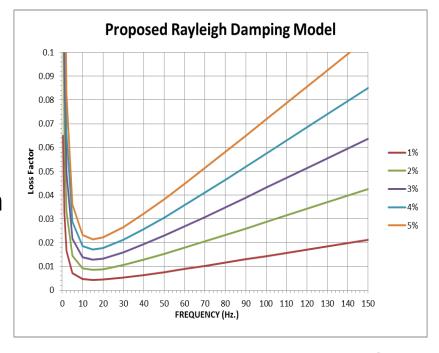
- Windowed acceleration⁽¹⁾
- Windowed pseudo-velocity⁽¹⁾
- Windowed RMS⁽²⁾
- Temporal moments first five moments
- Windowed input energy⁽¹⁾
- Windowed strain energy⁽¹⁾
- Windowed energy equivalent velocity⁽¹⁾
- (1) Five gaussian windows centered at 10, 20, 40, 80 and 160 Hz with 10, 20, 40, 80 and 160 Hz widths
- (2) Ten windows evenly spaced from 0 250 ms with minimal overlap

Significance of Qols


- Used to assess some feature of the response
- Windows allow certain time or frequency ranges to be analyzed independently
- Subset of QoIs may correlate with damage potential
 - Strain energy windowed near a fundamental frequency
- May not be necessary to match velocity time history
- Match Qols → simulation is useful

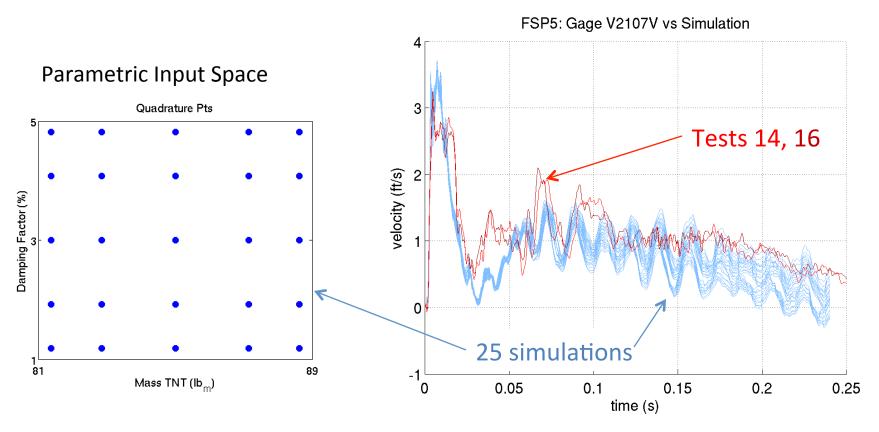
UQ Concept

- Represent uncertainty in model inputs with probability distributions
- Resulting output from the model is also uncertain


UQ methods – estimate the output distribution

Input Uncertainty

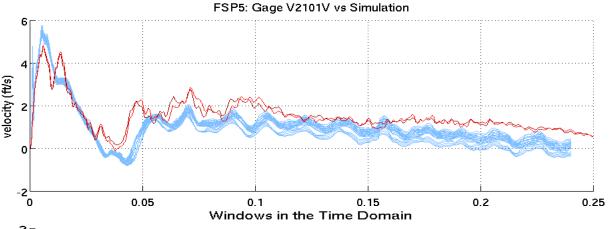
- Two sources of uncertainty in M&S
- Effective charge mass ±5%
 - Assumed a uniform distribution, centered at nominal mass
- Damping Factor
 - Controlled two parameters in a Rayleigh Damping scheme
 - Bounds were 1 and 5%
 - Assumed uniform distribution



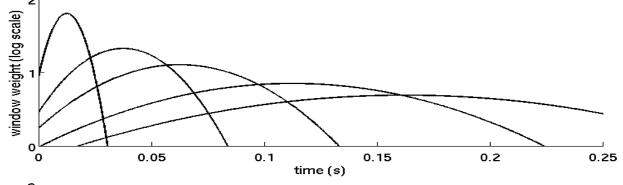
- Uniform Basis Random Variables
- Legendre polynomials as 'Basis Functionals'
- Inputs are 1st order PCE's
- Use 4th Order PCEs for outputs
 - Compute coefficients using 5th order Gauss-Legendre Quadrature
- 2 dimensions, 5th order → 25 NESM runs
- Other methods: Monte Carlo, Latin Hypercube Sampling

Sim vs. Tests: UNDEX loading on FSP

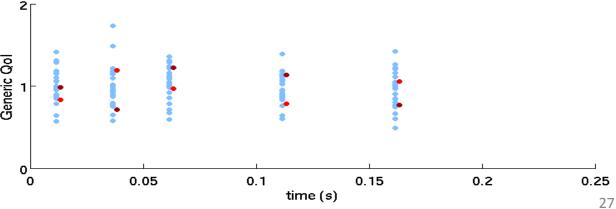
Measured/simulated responses



- UNDEX Charge mass → variation at early time
- Damping → variation at later times

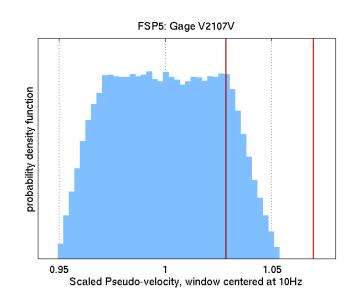


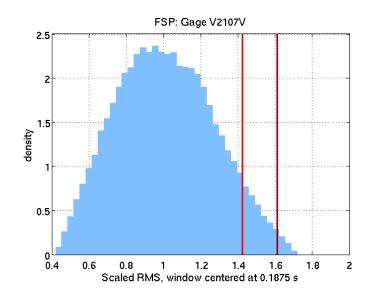
Qols = Windowed Measures


Start w/ signals for test and simulation

Integrate signal, weighted by window

→ windowed measures, used as QoIs

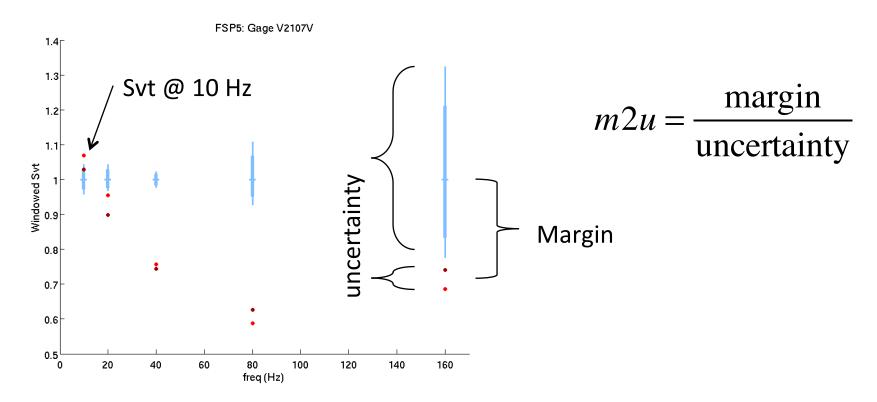




UQ on Qols

Compute Polynomial Chaos Expansion coefficients from samples
 → full probability density function of each Qol

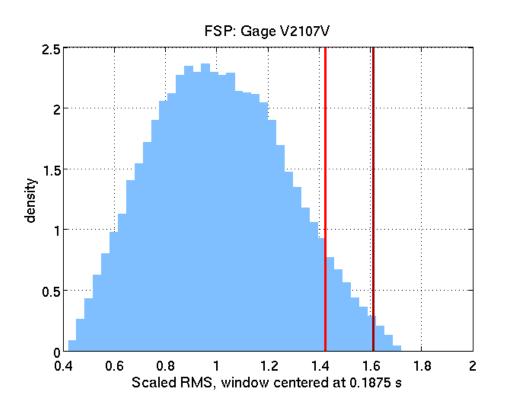
- Test Qols are shown in red
 - Only 1 or 2 tests at the same conditions
 - Hard to estimate uncertainty/error



Validation Checklist

- Use hierarchy to make best use of data
- Define Quantities of Interest, derived from responses
- Identify and characterize sources of uncertainty
 - Both physical sources and modeling sources
- Propagate effect of uncertainty to simulation responses (UQ)
- Compare Quantities of Interest from test and simulation (Validation)

Validation Metrics 1: Quantitative Comparisons of Qols



Does the uncertainty in test and simulation explain discrepancy between test and simulation?

- Do the test and simulations 'match'?
- How probable is it that the test QoIs were drawn from the population of QoIs derived from the simulations?

Summary

- FY12 program demonstrated the validation process
- NSWC Carderock developed M&S capabilities for UNDEX / Airgun loading and structural responses
- Quantities of Interest

 Isolate specific features
 - Windowed measures may be useful Qols
- Validation Metrics compare Qols from test & sim
- End goal establish credibility in M&S predictions
 - Validation process must incorporate engineering judgment

Future Work

- Greater coverage of V&V hierarchy
- Investigation of uncertainty sources
- Independent calibration and validation
- More experience with windowed measures as Qols
 - Have seen correlation between QoIs and features of velocity time histories
 - → 'Credible' predictions of responses to UNDEX & Airgun
 - Do Qols correlate with damage potential?
 - → Make comparison of damage from UNDEX & Airgun

