A Blast Model Comparison between Hydrocode and CFD

John Adams
Alexander Sweeney
Booz Allen Hamilton
Engineering and Operations Capability

November 7, 2012

Agenda

- Background
- Assumptions
- ▶ Problem
- ▶ The Codes
- ▶ The Models
- ▶ Results
- Observations and Differences
- ▶ Conclusions
- Recommendations

Background

- ▶ Blast or blast wave propagation modeling usually conducted using hydrocode
- CFD codes have the capability to do blast analysis
- Questions are asked
 - Are the results the same or similar?
 - Is one type of analysis superior to another?
 - Are there advantages to running one over the other?

Assumptions

- "Blast" equivalent to 20 kg TNT
- ▶ Initial high-pressure volume of air to avoid complexities of HE detonation
- ▶ Several rooms or spaces to provide a meandering path for the blast
- Include hallways or corridors
- ▶ Air at STP filled remaining volume of rooms
- Walls modeled as voids
- No escape pathways or boundaries
- Codes set up for model equivalency dimensions, mesh, etc.
- ▶ 2D proof of concept for Autodyn and Fluent was previously run

Problem

- Develop a problem that would challenge both codes
- ▶ Show differences in model, setup, run time, data analysis, accuracy
- ▶ Create models so they would be as "identical" as possible for each code
- Minimize factors that would contribute to initial differences
 - Explosion
 - Cell size

Model with Dimensions

Notes:

- Several rooms or spaces to provide a meandering path for the blast.
- Hallways or corridors
- Air is medium
- Walls modeled as voids
- · No escape pathways or boundaries

The Codes

Hydrocode

-ANSYS Autodyn®

- Physics-based wave propagation code
- A fully coupled Eulerian and Lagrange explicit dynamics simulation software
- An explicit analysis tool for modeling nonlinear dynamics of solids, fluids and gases
- Used for solving large deformation, finite strain transient problems that occur on a very short time scale, e.g., explosions, blast, shock, impact, penetration
- Tightly integrates the pre-processing, post-processing and analysis modules

CFD

-ANSYS Fluent®

- Physics-based computational fluid dynamics simulation code
- Subsonic to hypersonic; compressible and incompressible flow; laminar and turbulent; steady state to transient
- Tightly integrates pre-processing, meshing, and post-processing with simulation
- Highly parallel and scalable

Model as Built in Autodyn

Height = 3 m

Notes:

- 100 mm mesh
- 1 m wide corridors
- Ambient air at 14.7 psi
- 2000 psi air volume at t=0
- Air not allowed to escape through boundaries

Fluent Model

Pressurized Volume

Data Collection

Hydrocode

-ANSYS Autodyn®

- Gauges put in model to collect data while the model runs – data collected at times predetermined by user
- Screen shots of model generated at time intervals predetermined by user
- P-t curves generated
- Overpressure screen shots generated

CFD

-ANSYS Fluent®

- Data for model saved every 0.05 ms of flow time
- Large data files generated that can be used to product data plots and screen shots after the model has completed running
- P-t curves generated
- Overpressure screen shots generated

Gauge Locations

Notes:

- Gauges at 0.85 m off floor
- Fluent data was collected at same XYZ locations

Autodyn – Fluent Comparison of Pressure Contours

Autodyn – Fluent Comparison of Pressure Contours

Note: At each time interval, contour scales are identical

Autodyn – Fluent Animations

Fluent

- 0-50 ms
- 0.05 ms

Autodyn

- 0-50 ms
- 0.061 ms increments

Significant P-t divergence at early times

P-t convergence at late times

Booz | Allen | Hamilton

Very close P-t at late times

P-t behavior very similar, with late-time divergence

Observations

- ▶ Both hydrocode and CFD can handle pressure wave propagation
- ▶ General agreement in P-t, especially at longer time
- ▶ Fluent ∆t was an issue, especially at early times (0-15 ms)
- ▶ Fluent runtime was about 2X longer from 15-200 ms
- Autodyn optimized for running this class of problem efficiently
- Model very easy to build in Fluent
- Fluent has a very powerful mesh generator
- ▶ Fluent produces GB++ of data
- Both Fluent and Autodyn have comparable graphics capabilities

Conclusions

- ▶ Both hydrocode and CFD can run for blast wave propagation problems
- ▶ Hydrocode (Autodyn) is optimized for this type of analysis
- CFD (Fluent) has significant advantages
 - Importing and meshing complex geometry
 - Parallelization
 - Post processing
 - Types of data captured

Recommendations

- Use hydrocode for this type of analysis
 - Unless there are compelling reasons to do otherwise
- Use CFD when
 - Runtime not a factor
 - Availability of many processors
 - Complex geometry that would be difficult to mesh and run with hydrocode
 - Analysis requirements
- Optimize Fluent variable settings
 - Timestep iteration

Questions

John Adams

Associate

Booz | Allen | Hamilton

Booz Allen Hamilton 1550 Crystal Dr, Suite 1100 Arlington, VA 22202 Tel (703) 412-7700 adams_john@bah.com

Alexander Sweeney

Associate

Booz | Allen | Hamilton

Booz Allen Hamilton 1550 Crystal Dr, Suite 1100 Arlington, VA 22202 Tel (703) 412-7700 sweeney alexander@bah.com

Backup Slides

Runtime Comparison

Code	100 mm	
	Time, min.	# Cells
Autodyn DP (15 ms)	0.33	225,000
Fluent DP (15 ms)	6	225,000
Autodyn DP (15 – 200 ms)	2.25	225,000
Fluent DP (15 ms – 200 ms)	4	225,000

Fluent has longer run times, but is also saving massive amounts of data