

AF Hypersonic Vision ...

Airbreathing hypersonic platform technologies to produce revolutionary warfighting capabilities

Goal: S&T efforts to develop and mature robust, comprehensive technology options for:

- High Speed Strike
- Penetrating Regional ISR/Strike

AFRL'S Strategy Provides Incremental, Progressive Development of Hypersonic S&T

- Recent Developments
- High Speed Weapon portfolio
- High Speed Aircraft portfolio

- Recent Developments
- High Speed Weapon portfolio
- High Speed Aircraft portfolio

Recent Developments

- Demonstration of Technology Maturity
 - X-51A Scramjet Engine Demonstration
- Development of Advanced Technologies
 - HIFiRE Flight 2
- Exploration of Applications
 - Mission Analyses and Trade Studies

Making Hypersonics Practical & Useful

X-51A Scramjet Engine Demonstration

Flight test the AF Hypersonic Technology (HyTech) scramjet engine, using endothermic hydrocarbon fuel, by accelerating a vehicle from boost (~M=4.5) to Mach 6+

- Acquire ground and flight data on an actively cooled, self-controlled operating scramjet engine (rules and tools development)
- Demonstrate viability of an endothermically fueled scramjet in flight
- Prove viability of a free-flying, scramjet powered, vehicle (Thrust > Drag)

X-51A Flight Demonstrations

- Hydrocarbon scramjet to accelerate an air vehicle from Mach
 4.5 to Mach 6+ hypersonic cruise
- Four flight vehicles fabricated
- First flight test: May 2010
 - Accelerated from Mach 4.5 to Mach 5
 - 90% of criteria met
 - Thrust, drag, and thermal performance met expectations
 - Unprecedented 143 seconds of scramjet flight data
- Second flight test: June 2011
 - Inlet unstarted during acceleration relight attempts were unsuccessful
 - Fault Tree Analysis is guiding investigation.
- Third flight scheduled for August 2012

HIFiRE Flight 2 May 2012

- HIFiRE Flight 2 Scramjet Operating Mode Transition
 - Flight test in May from Kauai, Pacific Missile Range Facility
 - Builds upon prior flights at Woomera (May 2009, March 2010)
 - Rocket-boosted acceleration to Mach 8 through air-breathing flight corridor

Flight predictions anchored by high fidelity computations and ground tests

Mission Analyses & Trade Studies

• TRESPALS²

Technologies for Responsive Precision Air-Land-Sea Strike

- "How fast is fast enough?" for high speed weapons
- HSMAR

High Speed Mission Analysis Research

- High speed ISR & Strike platform technology challenges
- A New Generation of Concepts & Vision Vehicles

Benefit/Cost - Military Utility - Technology Gaps

- Recent Developments
- High Speed Weapon portfolio
- High Speed Aircraft portfolio

Survivable, High Speed Weapons Enabling Capabilities

Long Range at High Speed

Precision Strike

Variable Ordnance Effects

Aircraft Systems
Internal bombers
External fighters

Net Enabled In-Flight Targetable

Long Range

High Speed

Rapid, Responsive Strike in Anti-Access/Access Denied (A2/AD) Environments

High Speed Weapon Technology Focus Areas

Advanced Guidance for Surface Targets

Increased Accuracy

Ordnance - Precision Selectable Effects

High Speed Weapon Airframes

Lightweight - Low Cost

Efficient High Speed Expendable Propulsion

High Speed

High Speed Weapon Roadmap

Fiscal Year	FY10	FY11	FY12	FY13	FY14	FY15	FY16	FY17	FY18	FY19	FY20		
		TRESPALS2 Modeling Simulation & Analysis (MS&A)											
		Technolog	zv Develoi	oment/Hi	gh Speed	Advanced	Concepts		Technology Readiness Level				
					4	5			\sum_{i}		tion Point	(TAD)	
				u	igh Spood	Strike We	anon Dor	<u> </u>	100	ke up to s of miles			
				П	ign Speed	Strike We	зароп рег		A				

TECHNOLOGY AREAS

- High Speed Multimode Seekers
- Alternative high speed guidance (GPS denied environment)
- Ordnance Energetics
- Compact energetic booster
- Aeroconfiguration, structures and materials, control surfaces, TPS
- Compatibility with current and emerging fighters and bombers (compressed carriage)
- Low cost Manufacturing
- Compatibility with Navy/VLS

High Speed Strike Weapon Program Architecture

Managed corporately across AFRL

Eglin AFB, Wright-Patterson AFB, and Edwards AFB

- Recent Developments
- High Speed Weapon portfolio
- High Speed Aircraft portfolio

High Speed ISR/Strike Capabilities and Attributes

Operation in A2/AD Environments

Penetrate Denied Areas (Survivable)

Large ground coverage area

Mach 4+ Cruise

"Day Without Space"

Runway Takeoff and Landing

Turbine Based Combined Cycle

Reusable, Long-Life
Airframe

On-Demand Flight in A2/AD Environments

High Speed ISR/Strike Challenges and Demonstration Objectives

- Gas Turbine-to-Dual Mode Ramjet Transition
- Mach 4+ Cruise
 - Mach 0-4+ Acceleration
 - Limited Life at Higher Mach Cruise
- Aircraft Operation
 - Takeoff, Landing, Control
- Maneuvering
- Subscale Airframe, Half or Full-Scale Flowpath
- Testbed Secondary Objectives
 - CMC Structures
 - Advanced Power/Thermal Management
 - Sensors
 - Affordability Trades and Initiatives

High Speed ISR/Strike Technology Focus Areas

Supporting Resources for Primary Focus Areas:

MS&A: Operational Utility Analysis, Vision Vehicle, Architecture

Research Facilities: Computational, Ground, HiFIRE, Flight Research Vehicle

Summary

- Recent Developments
 - Steady progress towards new warfighting capabilities
- High Speed Weapon portfolio
 - Executable plan for technology maturation and transition
- High Speed Aircraft portfolio
 - Exploration and development of future capabilities

