
Craig Miller

Vice-President, Systems Engineering Government Communications Systems

Affordability:

- Capability vs. Cost Tradeoffs

Typically 60-70% of life cycle costs are locked in by early architecture/design decisions.

The ability to influence cost erodes quickly.

Cost committed can be high even while cost incurred to date is low.

Reference: GAO Cost Estimating and Assessment Guide, 2009.

www.gao.gov/new.items/d093sp.pdf

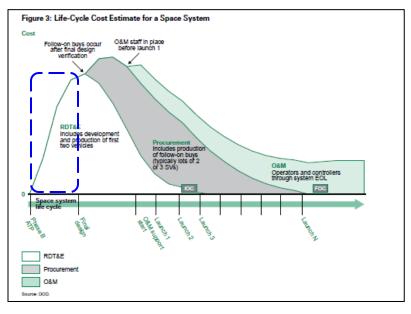
Reference: De http://www.dau

Reference: Defense AT&L: Product Support Issue, Mar-Apr 2012. http://www.dau.mil/pubscats/ATL%20Docs/Mar Apr 2012/

Consider potential cost drivers in evaluating and proposing architectural solutions:

- Mission capability
- Requirements
- Performance

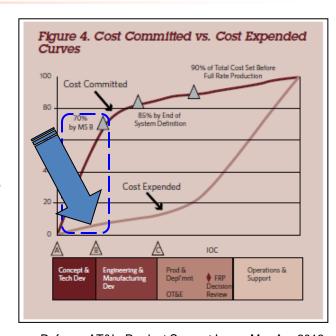
- Quality attributes ("ilities")
- Funding profile and constraints
- Make/buy decisions


- DTC / DFx
- COTS, custom, reuse
- LCC / supportability costs

Early system architecture/design decisions have profound impacts on affordability, life cycle cost, and program execution

Affordability:

- Capability vs. Cost Tradeoffs



Typically 60-70% of life cycle costs are locked in by early architecture/design decisions.

The ability to influence cost erodes quickly.

Cost committed can be high even while cost incurred to date is low.

Reference: Defense AT&L: Product Support Issue, Mar-Apr 2012. http://www.dau.mil/pubscats/ATL%20Docs/Mar_Apr_2012/

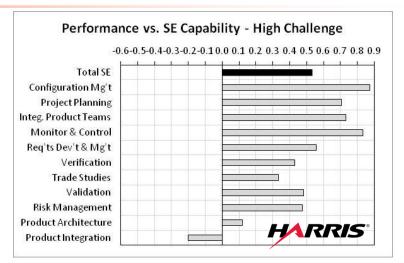
Reference: GAO Cost Estimating and Assessment Guide, 2009. <u>www.gao.gov/new.items/d093sp.pdf</u>

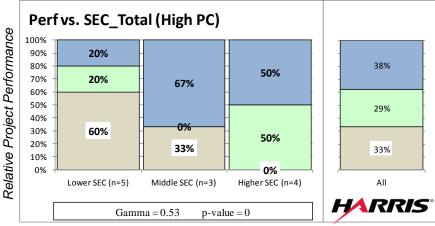
Consider potential cost drivers in evaluating and proposing architectural solutions:

- Mission capability
- Requirements
- Performance

- Quality attributes ("ilities")
- Funding profile and constraints
- Make/buy decisions

- DTC / DFx
- COTS, custom, reuse
- LCC / supportability costs


Early system architecture/design decisions have profound impacts on affordability, life cycle cost, and program execution


Correlating SE Capability and Project Performance Harris Projects in NDIA/IEEE/SEI SE Effectiveness Study

- The NDIA/IEEE/SELSE Effectiveness Study (2007, 2012) quantifies SE process capability vs. project performance
 - Strongest Harris correlations were observed for the most challenging projects ... where SE capability is needed most
- Also provides a convenient way to benchmark Harris projects against industry data sets

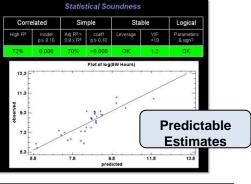
Reference: "The Business Case for Systems Engineering Study: Results of the Systems Engineering Effectiveness Survey" (SEI report publication pending) Acknowledgement to Joe Elm, Software Engineering Institute.

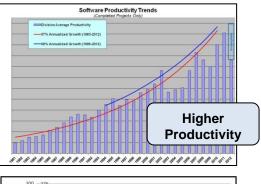
Relative SE Capability

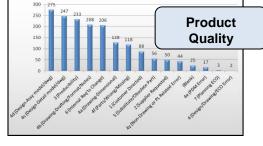
Higher SE Capability is Correlated with Better Project Performance – Especially on the Most Challenging Projects

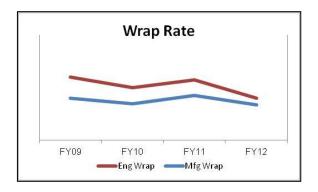
Measures of Operational Improvement

Define


Engineering Performance Improvements


Measure


Analyze


Improve

Control

Business Results

Sustained Emphasis on Operational Effectiveness and Customer Intimacy
Has Produced Positive Business Effects

Achieving the Benefits of Effective Systems Engineering

Best Practice Successes:

- Early Program Engagement
 - Affordability
 - Program Startup Teams ("Boots on the Ground")
- Early SE Emphasis
 - Mission Analysis, Partnerships
 - "Left Side of the Vee" (Architecture, Reqts, Design)
 - SE Process Discipline
- Early Proactive Action
 - Leading Indicators (Measures)
 - Risk Management
 - Non-Advocate Reviews
 (Design Reviews, Peer Reviews, IRTs)

Opportunities:

- Shaping Successful Programs (Development Planning)
- Realizing "80% Solutions"
- Aligning Investments (S&T, IR&D)
- Enterprise Architectures, SoSE
- Model-Based Engineering / Platform-Based Engineering
- Concurrent Engineering
 - DTC, DFx, Mfg, LCC, O&S, ...
- Growing SE Capabilities, Pipelines

Innovation. Performance. Anytime. Anywhere.

Contact Information:

Craig Miller
Vice-President, Systems Engineering
Harris Corporation, Government Communications Systems

bmille04@harris.com

Engineering Organization

Patrick Seamon Ph: 321-729-3452 Email: pseamon more info

GCS Division VP-Engineering

Operations Focused

James Clamons Ph: 321-729-7995 Email: jclamons more info

Ron Fisher Ph: 321-727-5388 Email: rfisher more info

Director, Engineering

Information Technology

Lilo Newberry Ph: 321-727-4974 Email: Inewberr more info

Craig Miller Ph: 321-727-6067 Email: bmille04 more info

VP-Engineering Operations

- Antennas, RF, Photonics
- Software
- Mechanical
- System Support/CM
- System I&T
- •Digital
- Advanced Sys & Technology (AS&T)
- Mission Critical Networks
- Eastern Region

VP-Operational Excellence DPG, EPG, Lean Six Sigma

VP-Systems Engineering

- 6 Business Areas 6 Eng Directors 6 SE Depts (EMs) 500 Employees
- Aerospace Systems (AS)
- Advanced Information Solutions (AIS)
- C4ISR Electronics
- Mission Critical Networks (MCN)
- Mission Information Systems (MIS)
- Proprietary Programs
- Western Region

Harris GCS Engineering is Organized to Maximize Systems Engineering Direct Support to Programs

Engineering Strategies for Operational Excellence

Evolutionary (continuing improvement)

Front End (Affordability)

- Common architectures, parts
- •80% solutions
- Design to Cost (DTC)
- Risk assessments
- Probabilistic risk-based bids

Back End (Efficiency)

- •Engage Eng Mgmt in program cost reduction efforts
- Year-over-year productivity
- Eng/Mfg integration (DFx)

Defect Reduction

- Reduce waste, rework
- Design review effectiveness
- Lean Six Sigma projects

People & Culture

- Develop front-end leaders (APEs, CSEs, PEs)
- Mission specialists
- •Products, IDIQ, Agile, ...

Sustain the Core (Incremental Efficiencies)

- Year over year trends, cost models
- •Operational efficiency (assets, labs, capital, ...)
- Tools, licensing, open source
- People: training, hiring, staffing, apprenticeships

Engineering Strategic Initiatives are Prioritized on Affordability, Cost Effectiveness, and Finding Key Program Issues Early

Tailoring

Program Types

- Development
- Production
- Operations and Maintenance
- Study
- Quick React Contract
- IR&D
- Short Delivery Cycle Program
- Agile

Typical Tailoring Decisions:

- Processes: What applies? What does not?
- **Standards:** Harris? Commercial? DIDs?
- Org Structure: Functional? IPTs? Co-located?
- Architectures: MBSE? Custom? COTS? Reuse?
- **Teaming:** Suppliers? Subs? Vendors?
- Tools: Standard tools? Program directed?
- Reviews: What? When? Who? How often?
- Metrics: Info needs? More? Less? TPMs?
- Risks: Prototypes? Models? Mitigation?

Think out of the box.

Tailoring adapts standard processes, assets, and tools to fit the objectives, mission needs, and constraints of the program – almost anything is tailorable!