

presentation to NDIA 23 October 2012

Joe Smith

joseph.s.smith@nasa.gov Systems Engineering Programs NASA Headquarters, Office of the Chief Engineer

Purpose

 Discuss Challenges Facing NASA's Systems Engineering Community

and

 Addressing those Challenges

NASA's Vision

NASA's Vision

To reach for new heights and reveal the unknown,

so that what we do and learn will benefit all humankind.

NASA Resources and Missions

- Budget FY '13 Plan
 - Total = \$17.7B
 - Aero = \$.5B
 - Science = \$4.9B
 - Exploration = \$3.9B
 - Space Ops = \$4B
 - Space Tech = \$.7B
 - Other = \$3.6B

- Workforce
 - Total = 17,813
 - 60% Engineering
 - 5% Scientist
 - 35% Other
 - Ten Field Centers
 - Four Facilities

NASA Centers and Facilities

NASA Aeronautics

Fundamental Aeronautics Program

Airspace Systems Program

Aviation Safety Program

Aeronautics Test Program

NASA Science

Human Explorations & Operations

NASA Mission Launches: FYs '11-'19

NASA's Systems Engineering Vision

Systems Engineering Approach

- NASA has developed and implemented best practices that constitute an updated approach to systems engineering to be used for all NASA missions
- Our approach: Learn from Our and Others' Experience
 - Develop and employ the best SE practices, tools and methods
 - Lessons learned
 - Knowledge capture and transfer
 - Benchmark
 - Systems Engineering Leadership Development Program
 - Mentoring

Engineering of Complex Systems

- End-to-End Design Architecture
- Integration
- Man-Machine Interface
- Legacy/Heritage Systems
- Multi-Decadel/Generational Life
- System Monitoring
- Unknown Risks and Second/Third Order Effects
- Collaboration

Example: MSL Entry/Descent/Landing

Example: Earth to Mars

Enabling Capabilities

- Beyond Earth Orbit Crew and Cargo Access
- In-space Propulsion
- Ground Operations
- In-Space Operations
- Long-Duration Habitation
- Mobile Exploration Module
- EVA Systems
- Precursor Robotics
- Human-Robotic Interfaces
- Destination Systems

Engineering Complex Systems: NASA Status

- Current State:
 - Developing Systems with Traditional SE Processes and Tools
 - Some Programs and Projects are Introducing Model-Based Engineering
- Initiatives:
 - NASA Integrated Model-Centric Architecture
 - Model-Based Systems Engineering and PP&C
 - PDLM
 - Training
 - Benchmarking
 - Inter-Agency Working Group
 - Common Understanding of Problems
 - Identified Need to Collaborate, Share Expertise and Resources
 - Early Formation Phase

Summary

- Systems Engineering is Strong and Pervasive
- Future Missions Create BIG Challenges
- Collaborative Approach to Tackling the BIG COMPLEX PROBLEM is a MUST

