
© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

A Methodology for Exposing

Software Safety Risk in Early

Development Phases

Lucas Layman, Victor R. Basili, Marvin V. Zelkowitz
Fraunhofer Center for Experimental Software Engineering

NDIA Systems Engineering Conference

October 24, 2012

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Outline

1. The challenge: measuring software safety risk early in

the lifecycle

2. Apply the Process Risk Assessment (PRA)

methodology to NASA’s Constellation program

3. Common software safety process risks, lessons

learned and recommendations

2

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

A safety risk is a hazard – any real or potential condition that can

cause:

– injury, illness, or death to personnel;

– damage to or loss of a system, equipment, or property; or

– damage to the environment

Software safety risks have become a greater concern in systems

development as many traditionally hardware-centric systems

become more reliant on software

Software safety is an example of an emergent system property

that cannot be fully tested until the system is operational.

3

What is software safety risk?

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Constellation – why measure software

safety risk?

• Hundreds of suppliers, thousands of engineers

• NASA oversight on quality, safety, reliability

4

Ares rockets

Altair lunar lander

Orion crew vehicle

Image credits to NASA

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

The challenge - What is the state of software

safety in my system?

5

Software Safety Assurance Project Safety Engineers

“What is software’s impact on system

safety?”

“Which subsystems have the most

software safety risks?”

“Are our software safety processes

appropriate?

“How does software fail?”

“How do I talk about software in relation
to the rest of the system?”

Advanced
Studies

Mission & Systems
Definition

Preliminary
Design

Design & Build
Assembly, Test, and

Launch
Operations

Early visibility: How do I assess software
safety when there is no software?

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Managing safety risk through process – hazard

analysis

• Hazard reports are created by safety engineers and stored in a hazard tracking system

• Hazard reports are reviewed at development milestones before development proceeds

• Hazard analysis is governed by a process document

6

Hazard

Cause Cause Cause

Control Control

Hazard

Cause Cause Cause

Control Control

Example: Avionics hardware failure results in loss of control.

Example: The flight computer send a ‘shut down’ command
to the engine control unit during the Ascent phase.

Example: The engine control unit must verify an ‘emergency
condition’ for all ‘shut down’ commands during Ascent.

Hazard analysis is a top-down approach to system safety that identifies

potential conditions that could lead to loss of life, injury, damage to equipment

or the environment.

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Examining safety assurance processes

The processes for achieving safety must satisfy three
assumptions:

1. The process is capable of achieving safety or
mitigating the risk of not being safe;

2. The process is appropriate for the development
context;

3. The process is followed correctly

If a process fails to meet any of these three
assumptions, there is a risk that the product will not
achieve acceptable levels of safety

7

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Safety risk measurement approach

Approach: Measure process artifacts with respect to the
safety risks they are meant to mitigate.

– Process artifacts contain indicators of potential risk.

– Processes and process artifacts are available throughout development.

– Quantifiable measures for trend analysis, baselines and comparison.

8

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Outline

1. The challenge: measuring software safety risk early in

the lifecycle

2. Apply the Process Risk Assessment (PRA)

methodology to NASA’s Constellation program

3. Common software safety process risks, lessons

learned and recommendations

9

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Process Risk Assessment Method

10

1. Identify insight areas

2. Identify measurement
opportunities

3. Develop readiness
assessment questions

4. Define goals, questions,
and metrics for risk areas

5. Develop and
enumerate models

6. Propose responses to
identified risks

PRA is our 6-step safety process
risk approach applicable to
emergent system properties,
e.g. safety, reliability, …

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Hazard 1

Cause 2 Cause 3

Control 2 Control 3

Cause 1 Cause 4

Control 1
see

Hazard 12

Verification 1 Verification 2

Step 1: Identify insight areas

11

Identify intermediate outputs of a process that can provide insights into

process conformance and effectiveness

 The set of hazards, with its causes, controls, and verifications

 The relationship between hazard causes, controls, and verifications over time

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Process Risk Assessment Method

12

1. Identify insight areas

2. Identify measurement
opportunities

3. Develop readiness
assessment questions

4. Define goals, questions,
and metrics for risk areas

5. Develop and
enumerate models

6. Propose responses to
identified risks

PRA is our 6-step safety process
risk approach applicable to
emergent system properties,
e.g. safety, reliability, …

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Hazard 1

Cause 2 Cause 3

Control 2 Control 3

Cause 1 Cause 4

Control 1
see

Hazard 12

Verification 1 Verification 2

Hazard 1

Cause 2 Cause 3

Control 2 Control 3

Cause 1 Cause 4

Control 1
see

Hazard 12

Verification 1 Verification 2

Step 2: Identify measurement opportunities

13

Evaluate each insight area for information that could be used to measure

technical or process risks

Quantify software’s prevalence in hazards
by counting hazards, causes and controls
with software

Find the subsystems with the most
software risks

What is the quality of this information?

Is the information complete and
syntactically correct?

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Process Risk Assessment Method

14

1. Identify insight areas

2. Identify measurement
opportunities

3. Develop readiness
assessment questions

4. Define goals, questions,
and metrics for risk areas

5. Develop and
enumerate models

6. Propose responses to
identified risks

PRA is our 6-step safety process
risk approach applicable to
emergent system properties,
e.g. safety, reliability, …

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Hazard 1

Cause 2 Cause 3

Control 2 Control 3

Cause 1 Cause 4

Control 1
see

Hazard 12

Verification 1 Verification 2

Step 3: Develop readiness assessment questions

15

Determine if it is possible to delve deeper into the area

e.g., Are the cause, control and verification data available, up to date,

and complete enough for analysis?

Hazard 1

Cause 2 Cause 3

Control 2 Control 3

Cause 1 Cause 4

Control 1
see

Hazard 12

Verification 1 Verification 2 TBD

 TBD

 TBD

Not yet available

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Process Risk Assessment Method

16

1. Identify insight areas

2. Identify measurement
opportunities

3. Develop readiness
assessment questions

4. Define goals, questions,
and metrics for risk areas

5. Develop and
enumerate models

6. Propose responses to
identified risks

PRA is our 6-step safety process
risk approach applicable to
emergent system properties,
e.g. safety, reliability, …

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Step 4: Define goals, questions and metrics

We used the Goal-Question-Metrics (GQM)

Approach to formalize the goals from which we

derived the questions and measures

We define our goals to be:

– Goal 1: Quantify the importance of software with

respect to system safety; and

– Goal 2: Quantify the level of risk due to software by

leveraging the hazard analysis process.

17

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Goal 1 - Prevalence of software

Analyze the available set of hazards in order to characterize them with respect
to the prevalence of software in hazards, causes, and controls from the
point of view of NASA quality assurance personnel in the context of the
Constellation program

Example Questions

What percentage of the hazards is software-related? A software-related hazard
has at least one software cause or software control.

What percentage of hazard causes have software controls?

What percentage of hazard causes are non-software causes (e.g., hardware,
operational error, procedural error) with software controls? These causes
represent potentially “hidden” software risks.

Example Metrics

The number and percentage of software-related hazards

The number and percentage of software causes

The number and percentage of software controls

18

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Goal 2 - Specificity of software causes
Analyze the software causes in a sample set of hazard reports in order to

evaluate them with respect to the specificity of those software causes and

hazards from the point of view of NASA quality assurance personnel in the

context of the Constellation program.

Example Questions

What number and percentage of software causes is well-specified, partially-

specified, or generically-defined according to the Constellation hazard

analysis methodology requirements?

 A well-specified software cause describes all of the following:

Origin – the CSCI (e.g., software component) that fails to perform its operation correctly

Erratum – a description of the erroneous command, command sequence or failed operation of

the CSCI

Impact – the effect of the erratum which results in the hazardous condition, and if known, the

specific CSCI(s) or hardware subsystem(s) affected

Example Metrics

• Count the software causes that are well-specified

19

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Step 4: Metric values

GQM for each risk area to expose risks associated with

process artifacts

20

Question Sys A Sys B Sys C

1 What percentage of the hazards is software-related? 45% 67% 70%

2 What percentage of the hazard causes are software causes? 15% 12% 17%

3 What percentage of hazard causes are hardware causes with software
controls (hidden software related hazards)?

14% 11% -

4 What percentage of hardware causes has software controls? 16% 12% -
5 What percentage of the causes has software controls? 29% 23% -
6 What percentage of causes is transferred? 31% 22% 37%
7 What percentage of controls is transferred? 22% 11% -
8 What percentage of the non-transferred hazard controls are specific

software controls?

12% 14% -

9 What percentage of the non-transferred hazard controls are references
to “generic” software hazards?

5% 2% -

* System C controls are in a format that prevented accurate assessment of whether the control is software or not.

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Process Risk Assessment Method

21

1. Identify insight areas

2. Identify measurement
opportunities

3. Develop readiness
assessment questions

4. Define goals, questions,
and metrics for risk areas

5. Develop and
enumerate models

6. Propose responses to
identified risks

PRA is our 6-step safety process
risk approach applicable to
emergent system properties,
e.g. safety, reliability, …

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Steps 5 and 6

• Step 5: Develop interpretation models and define

threshold values

– For each metric that was measured, define values that represent

appropriate process conformance and those values that

represent potential risk that the process is not being followed

• Step 6: Propose responses to identified risks, e.g.,

decisions and actions

– Propose responses to the early risk identifications that can and

should be taken as soon as possible to alleviate the risk

22

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Steps 5 & 6: Interpreting and responding

Step 5 – develop and enumerate models of how the measures will be

interpreted via threshold values.

23

Subsystem HRs SW HRs SW related % SW HRs % SW related

Affected subsystem – Top 3 out of 52

Avionics 26 13 13 50% 50%

Propulsion 34 12 18 35% 53%

Command & Data Handling 29 9 14 31% 48%

Step 6 – propose responses to identified risks, e.g., decisions and actions.

> 50% indicates
increased

software risk

1. Allocate additional Software Assurance personnel to design teams and product
reviews to evaluate software risk.

2. Require dissimilar command monitoring software on separate partition for all
software commands issued to this subsystem

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Outline

1. The challenge: measuring software safety risk early in

the lifecycle

2. Apply the Process Risk Assessment (PRA)

methodology to NASA’s Constellation program

3. Common software safety process risks, lessons

learned and recommendations

24

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Common software safety process risks
We applied the PRA method to evaluate software safety on

three projects to date:

1. NASA Constellation project

2. A large, network-centric US Department of Defense system-of-systems

3. NASA satellite

Three process risks were common across the projects

1. Inability to track software safety hazards and requirements – software

safety risks were often not specifically marked in the hazard reports

2. Inadequate traceability – No bi-directional traceability between safety

requirements, hazards, causes and controls

3. Inconsistent scope and unstructured details – safety engineers on each

project wrote their hazards, causes and controls in unique ways

25

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Software cause “user guide”

26

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Common software safety risks (2)

Institutional challenges:
– Integrating software safety with traditional safety

processes that originated in hardware and system
reliability.

– Defining how software should be incorporated into
traditionally hardware-oriented analyses (such as
hazard analysis) is still very much a work in progress

– Elevating software safety to a level of importance
equivalent to hardware and system safety was
challenging.

27

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Lessons learned for future programs

1. Need to provide explicit guidance for applying
safety analyses to software.

2. Need to plan for automated analysis and
traceability and promote usage of the hazard
tracking system capabilities.

3. Need to require software safety management
and measurement in the acquisition process in
order for appropriate data to be made available
for safety analysis during development

28

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Thanks and acknowledgement

Contact: Lucas Layman (llayman@fc-md.umd.edu)

Victor Basili (basili@cs.umd.edu)

Marv Zelkowitz (mvz@cs.umd.edu)

Full-length technical report: http://goo.gl/fEKc2

Acknowledgements

• This research was supported by NASA OSMA SARP
grant NNX08AZ60G

• Thanks to Karen Fisher and Risha George at Goddard
Space Flight Center

29

mailto:llayman@fc-md.umd.edu
mailto:llayman@fc-md.umd.edu
mailto:llayman@fc-md.umd.edu
mailto:basili@cs.umd.edu
mailto:mvz@cs.umd.edu
http://goo.gl/fEKc2
http://goo.gl/fEKc2
http://goo.gl/fEKc2

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Some Publications

1. Basili V. R., Zelkowitz M. V., Layman L., and Dangle K., Obtaining valid
safety data for software safety measurement and process improvement,
Empirical Software Engineering and Measurement, Bolzano Italy,
September 2010.

2. Layman L., Basili V. R., Zelkowitz M. V., and Fisher K. L., A case study of
measuring process risk for early insights into software safety, ACM and
IEEE Int. Conf. on Software Engineering, Honolulu, HI, May 2011.

3. Basili V. R., Layman L., Zelkowitz M. V., A Methodology for Exposing
Software Development Risk in Emergent System Properties, Technical
Report 11-101, Fraunhofer Center for Experimental Software Engineering
College Park, Maryland 20740, April 21, 2011

4. Basili V. R., Layman L., Zelkowitz M. V., A Methodology for Exposing
Software Development Risk in Emergent System Properties (Fraunhofer
Technical Report).

30

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

BACKUP SLIDES

31

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Process Risk Assessment Method

PRA is our 6-step safety process risk approach
applicable to emergent system properties, e.g. safety,
reliability, …

32

I. Identifying insight
opportunities

1. Identify insight areas from the development process
that provide insight into risk areas.

2. Identify measurement opportunities that provide
insight into each risk area.

II. Evaluating the quality of
information

3. Develop readiness assessment questions to identify if it
is possible to delve deeper into the area.

III. Measuring,
interpreting, and
providing advice

4. Define goals, questions, and measures for each risk
area to expose risks associated with process artifacts.

5. Develop and enumerate models of how the measures
will be interpreted via threshold values.

6. Propose responses to identified risks, e.g., decisions
and actions.

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Step 1: Details

 • Inputs

– The property you want to measure

– The processes associated with achieving that property

– The intermediate outputs of each step for each process

• Outputs

– The set of process outputs or artifacts that should give us the most
information about the effectiveness of the process for achieving the
property, including:

– The format of the output

– Rationale as to how these outputs are of value for identifying the risk of non-
conformance or evaluating the effectiveness of the process

• Sample Activities or Questions to ask

– What are the process outputs created during application of the process?

– How does that information grow or change over time?

– Can I use this information to gain insight into whether the process is being
performed appropriately and if the process is achieving its goals?

33

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Step 2: Details

• Inputs

– Process outputs/artifacts identified in step one

• Outputs

– Potential metrics based on process outputs/artifacts

• Sample Activities or Questions to ask

– What can I measure to determine if the desired product property
(e.g. safety, reliability) is being achieved?

– What can I measure to evaluate if the process is sufficient for
achieving the desired property?

– Can we identify potential bounds that provide insight for our
goals? What is good or bad?

34

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Step 3: Details

• Inputs

– Proposed measurement opportunities and the associated risks they measure

• Outputs

– Advice on how the intermediate outputs and metrics can be used to identify
process risk

– A high-level assessment of process conformance risk, i.e. are the processes
producing meaningful outputs?

– If step 3 fails, this is a likely indicator of process risk

– If step 3 succeeds, then continue with the remainder of PRA to measure risk

• Sample Activities or Questions to ask

– Examine the process artifacts and try to apply the proposed metrics. Can I apply
the metric?

• Is the information accessible and available?

• Is the information in good enough form that it can be measured?

– If I cannot apply a metric, why not?

35

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Step 4: Details

• Inputs

– A set of proposed metrics that have passed the readiness assessment
check

• Outputs

– A GQM structure with specific goals, questions and metrics

• Activities or Questions to ask

– Apply the GQM method to derive a goal template, the questions, and
what measures are needed.

• What is the object of study?

• What is the specific focus of the measure?

• What is the purpose of the measure?

• Who is the person who needs to make a decision about the results of this
measure?

• What are the context variables that might influence the interpretation of the
results?

• Given the goals and questions, what are the metrics?

36

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Step 5: Details

• Inputs

– A set of goals, questions and metrics to be collected

• Outputs

– A set of models that provides indication that there may be a risk

• Activities or Questions to ask

– Define a set of measures and interpretation models for those metrics,
based upon what data is available or can be assumed, to provide
indicators that there is a risk that the process is not being followed and
the product is at risk of not satisfying the particular property.

• What is the expected value of that metric and possible margin of
error, i.e. what is the range of values that would be acceptable?

• Do historical data exist for any of the metrics?

• Are there proxies for the bounds on these metrics?

• Can we gather any expert opinion on the bounds?

37

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Step 6: Details

• Inputs

– Metrics and an interpretation model

– Data from intermediate project artifacts

• Outputs

– Advice on what the project should do if we are outside the

acceptable bounds and there is a risk

• Activities or Questions to ask

– Provide expert safety engineer advice on what to do under the

circumstances

38

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Summary
• PRA identified metrics based on hazard data to quantify risk early in the

lifecycle

– Identified early risk in three systems

– Created a baseline for comparison with future review milestones and
projects

– Measures used as input into a Software Risk Dashboard to identify
subsystems and mission phases with highest software risk

• PRA was able to identify process problems and improve the processes

• Identified where and why the process was not being followed

• Developed guidelines developed for safety engineers to describe
software causes of hazardous conditions

• Developed a draft “Handbook” for incorporating and improving
software assurance oversight for acquisitions (RFP process)

• PRA demonstrated the benefits of automated analysis of early data

• Built a prototype Hazard Tracking System tool that demonstrated the
benefits of additional data and traceability when analyzing software
safety risk

39

