
© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

A Methodology for Exposing

Software Safety Risk in Early

Development Phases

Lucas Layman, Victor R. Basili, Marvin V. Zelkowitz
Fraunhofer Center for Experimental Software Engineering

NDIA Systems Engineering Conference

October 24, 2012

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Outline

1. The challenge: measuring software safety risk early in

the lifecycle

2. Apply the Process Risk Assessment (PRA)

methodology to NASAôs Constellation program

3. Common software safety process risks, lessons

learned and recommendations

2

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

A safety risk is a hazard ï any real or potential condition that can

cause:

ï injury, illness, or death to personnel;

ï damage to or loss of a system, equipment, or property; or

ï damage to the environment

Software safety risks have become a greater concern in systems

development as many traditionally hardware-centric systems

become more reliant on software

Software safety is an example of an emergent system property

that cannot be fully tested until the system is operational.

3

What is software safety risk?

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Constellation ï why measure software

safety risk?

ÅHundreds of suppliers, thousands of engineers

ÅNASA oversight on quality, safety, reliability

4

Ares rockets

Altair lunar lander

Orion crew vehicle

Image credits to NASA

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

The challenge - What is the state of software

safety in my system?

5

Software Safety Assurance Project Safety Engineers

ñWhat is softwareôs impact on system

safety?ò

ñWhich subsystems have the most

software safety risks?ò

ñAre our software safety processes

appropriate?

άIƻǿ ŘƻŜǎ ǎƻŦǘǿŀǊŜ ŦŀƛƭΚέ

άIƻǿ Řƻ L ǘŀƭƪ ŀōƻǳǘ ǎƻŦǘǿŀǊŜ ƛƴ ǊŜƭŀǘƛƻƴ
ǘƻ ǘƘŜ ǊŜǎǘ ƻŦ ǘƘŜ ǎȅǎǘŜƳΚέ

Advanced
Studies

Mission & Systems
Definition

Preliminary
Design

Design & Build
Assembly, Test, and

Launch
Operations

Early visibility: How do I assess software
safety when there is no software?

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Managing safety risk through process ï hazard

analysis

Å Hazard reports are created by safety engineers and stored in a hazard tracking system

Å Hazard reports are reviewed at development milestones before development proceeds

Å Hazard analysis is governed by a process document

6

Hazard

Cause Cause Cause

Control Control

Hazard

Cause Cause Cause

Control Control

Example: Avionics hardware failure results in loss of control.

9ȄŀƳǇƭŜΥ ¢ƘŜ ŦƭƛƎƘǘ ŎƻƳǇǳǘŜǊ ǎŜƴŘ ŀ ΨǎƘǳǘ ŘƻǿƴΩ ŎƻƳƳŀƴŘ
to the engine control unit during the Ascent phase.

9ȄŀƳǇƭŜΥ ¢ƘŜ ŜƴƎƛƴŜ ŎƻƴǘǊƻƭ ǳƴƛǘ Ƴǳǎǘ ǾŜǊƛŦȅ ŀƴ ΨŜƳŜǊƎŜƴŎȅ
ŎƻƴŘƛǘƛƻƴΩ ŦƻǊ ŀƭƭ ΨǎƘǳǘ ŘƻǿƴΩ ŎƻƳƳŀƴŘǎ ŘǳǊƛƴƎ !ǎŎŜƴǘΦ

Hazard analysis is a top-down approach to system safety that identifies

potential conditions that could lead to loss of life, injury, damage to equipment

or the environment.

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Examining safety assurance processes

The processes for achieving safety must satisfy three
assumptions:

1. The process is capable of achieving safety or
mitigating the risk of not being safe;

2. The process is appropriate for the development
context;

3. The process is followed correctly

If a process fails to meet any of these three
assumptions, there is a risk that the product will not
achieve acceptable levels of safety

7

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Safety risk measurement approach

Approach: Measure process artifacts with respect to the
safety risks they are meant to mitigate.

ïProcess artifacts contain indicators of potential risk.

ïProcesses and process artifacts are available throughout development.

ïQuantifiable measures for trend analysis, baselines and comparison.

8

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Outline

1. The challenge: measuring software safety risk early in

the lifecycle

2. Apply the Process Risk Assessment (PRA)

methodology to NASAôs Constellation program

3. Common software safety process risks, lessons

learned and recommendations

9

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Process Risk Assessment Method

10

1. Identify insight areas

2. Identify measurement
opportunities

3. Develop readiness
assessment questions

4. Define goals, questions,
and metrics for risk areas

5. Develop and
enumerate models

6. Propose responses to
identified risks

PRA is our 6-step safety process
risk approach applicable to
emergent system properties,
ŜΦƎΦ ǎŀŦŜǘȅΣ ǊŜƭƛŀōƛƭƛǘȅΣ Χ

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Hazard 1

Cause 2 Cause 3

Control 2 Control 3

Cause 1 Cause 4

Control 1
see

Hazard 12

Verification 1 Verification 2

Step 1: Identify insight areas

11

Identify intermediate outputs of a process that can provide insights into

process conformance and effectiveness

 The set of hazards, with its causes, controls, and verifications

 The relationship between hazard causes, controls, and verifications over time

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Process Risk Assessment Method

12

1. Identify insight areas

2. Identify measurement
opportunities

3. Develop readiness
assessment questions

4. Define goals, questions,
and metrics for risk areas

5. Develop and
enumerate models

6. Propose responses to
identified risks

PRA is our 6-step safety process
risk approach applicable to
emergent system properties,
ŜΦƎΦ ǎŀŦŜǘȅΣ ǊŜƭƛŀōƛƭƛǘȅΣ Χ

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Hazard 1

Cause 2 Cause 3

Control 2 Control 3

Cause 1 Cause 4

Control 1
see

Hazard 12

Verification 1 Verification 2

Hazard 1

Cause 2 Cause 3

Control 2 Control 3

Cause 1 Cause 4

Control 1
see

Hazard 12

Verification 1 Verification 2

Step 2: Identify measurement opportunities

13

Evaluate each insight area for information that could be used to measure

technical or process risks

vǳŀƴǘƛŦȅ ǎƻŦǘǿŀǊŜΩǎ ǇǊŜǾŀƭŜƴŎŜ ƛƴ ƘŀȊŀǊŘǎ
by counting hazards, causes and controls
with software

Find the subsystems with the most
software risks

What is the quality of this information?

Is the information complete and
syntactically correct?

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Process Risk Assessment Method

14

1. Identify insight areas

2. Identify measurement
opportunities

3. Develop readiness
assessment questions

4. Define goals, questions,
and metrics for risk areas

5. Develop and
enumerate models

6. Propose responses to
identified risks

PRA is our 6-step safety process
risk approach applicable to
emergent system properties,
ŜΦƎΦ ǎŀŦŜǘȅΣ ǊŜƭƛŀōƛƭƛǘȅΣ Χ

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Hazard 1

Cause 2 Cause 3

Control 2 Control 3

Cause 1 Cause 4

Control 1
see

Hazard 12

Verification 1 Verification 2

Step 3: Develop readiness assessment questions

15

Determine if it is possible to delve deeper into the area

e.g., Are the cause, control and verification data available, up to date,

and complete enough for analysis?

Hazard 1

Cause 2 Cause 3

Control 2 Control 3

Cause 1 Cause 4

Control 1
see

Hazard 12

Verification 1 Verification 2 TBD

 TBD

 TBD

Not yet available

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Process Risk Assessment Method

16

1. Identify insight areas

2. Identify measurement
opportunities

3. Develop readiness
assessment questions

4. Define goals, questions,
and metrics for risk areas

5. Develop and
enumerate models

6. Propose responses to
identified risks

PRA is our 6-step safety process
risk approach applicable to
emergent system properties,
ŜΦƎΦ ǎŀŦŜǘȅΣ ǊŜƭƛŀōƛƭƛǘȅΣ Χ

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Step 4: Define goals, questions and metrics

We used the Goal-Question-Metrics (GQM)

Approach to formalize the goals from which we

derived the questions and measures

We define our goals to be:

ïGoal 1: Quantify the importance of software with

respect to system safety; and

ïGoal 2: Quantify the level of risk due to software by

leveraging the hazard analysis process.

17

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Goal 1 - Prevalence of software

Analyze the available set of hazards in order to characterize them with respect
to the prevalence of software in hazards, causes, and controls from the
point of view of NASA quality assurance personnel in the context of the
Constellation program

Example Questions

What percentage of the hazards is software-related? A software-related hazard
has at least one software cause or software control.

What percentage of hazard causes have software controls?

What percentage of hazard causes are non-software causes (e.g., hardware,
operational error, procedural error) with software controls? These causes
represent potentially ñhiddenò software risks.

Example Metrics

The number and percentage of software-related hazards

The number and percentage of software causes

The number and percentage of software controls

18

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Goal 2 - Specificity of software causes
Analyze the software causes in a sample set of hazard reports in order to

evaluate them with respect to the specificity of those software causes and

hazards from the point of view of NASA quality assurance personnel in the

context of the Constellation program.

Example Questions

What number and percentage of software causes is well-specified, partially-

specified, or generically-defined according to the Constellation hazard

analysis methodology requirements?

 A well-specified software cause describes all of the following:

Origin ï the CSCI (e.g., software component) that fails to perform its operation correctly

Erratum ï a description of the erroneous command, command sequence or failed operation of

the CSCI

Impact ï the effect of the erratum which results in the hazardous condition, and if known, the

specific CSCI(s) or hardware subsystem(s) affected

Example Metrics

ÅCount the software causes that are well-specified

19

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Step 4: Metric values

GQM for each risk area to expose risks associated with

process artifacts

20

Question Sys A Sys B Sys C

1 What percentage of the hazards is software-related? 45% 67% 70%

2 What percentage of the hazard causes are software causes? 15% 12% 17%

3 What percentage of hazard causes are hardware causes with software
controls (hidden software related hazards)?

14% 11% -

4 What percentage of hardware causes has software controls? 16% 12% -
5 What percentage of the causes has software controls? 29% 23% -
6 What percentage of causes is transferred? 31% 22% 37%
7 What percentage of controls is transferred? 22% 11% -
8 What percentage of the non-transferred hazard controls are specific

software controls?
12% 14% -

9 What percentage of the non-transferred hazard controls are references
ǘƻ άƎŜƴŜǊƛŎέ ǎƻŦǘǿŀǊŜ ƘŀȊŀǊŘǎΚ

5% 2% -

* System C controls are in a format that prevented accurate assessment of whether the control is software or not.

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Process Risk Assessment Method

21

1. Identify insight areas

2. Identify measurement
opportunities

3. Develop readiness
assessment questions

4. Define goals, questions,
and metrics for risk areas

5. Develop and
enumerate models

6. Propose responses to
identified risks

PRA is our 6-step safety process
risk approach applicable to
emergent system properties,
ŜΦƎΦ ǎŀŦŜǘȅΣ ǊŜƭƛŀōƛƭƛǘȅΣ Χ

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Steps 5 and 6

ÅStep 5: Develop interpretation models and define

threshold values

ïFor each metric that was measured, define values that represent

appropriate process conformance and those values that

represent potential risk that the process is not being followed

ÅStep 6: Propose responses to identified risks, e.g.,

decisions and actions

ïPropose responses to the early risk identifications that can and

should be taken as soon as possible to alleviate the risk

22

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Steps 5 & 6: Interpreting and responding

Step 5 ï develop and enumerate models of how the measures will be

interpreted via threshold values.

23

Subsystem HRs SW HRs SW related % SW HRs % SW related
Affected subsystem ς Top 3 out of 52
Avionics 26 13 13 50% 50%

Propulsion 34 12 18 35% 53%

Command & Data Handling 29 9 14 31% 48%

Step 6 ï propose responses to identified risks, e.g., decisions and actions.

> 50% indicates
increased

software risk

1. Allocate additional Software Assurance personnel to design teams and product
reviews to evaluate software risk.

2. Require dissimilar command monitoring software on separate partition for all
software commands issued to this subsystem

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Outline

1. The challenge: measuring software safety risk early in

the lifecycle

2. Apply the Process Risk Assessment (PRA)

methodology to NASAôs Constellation program

3. Common software safety process risks, lessons

learned and recommendations

24

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Common software safety process risks
We applied the PRA method to evaluate software safety on

three projects to date:

1. NASA Constellation project

2. A large, network-centric US Department of Defense system-of-systems

3. NASA satellite

Three process risks were common across the projects

1. Inability to track software safety hazards and requirements ï software

safety risks were often not specifically marked in the hazard reports

2. Inadequate traceability ï No bi-directional traceability between safety

requirements, hazards, causes and controls

3. Inconsistent scope and unstructured details ï safety engineers on each

project wrote their hazards, causes and controls in unique ways

25

© 2012 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Software cause ñuser guideò

26

