
Defining Requirements for Error Handling

with Usage Models

Dr. William Bail

The MITRE Corporation

24 Oct 2012

15th Annual NDIA Systems

Engineering Conference 2012

The authors’ affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to

convey or imply MITRE's concurrence with, or support for, the positions, opinions or view points expressed by these authors.

MITRE

MITRE
2

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Introduction

 Development of software systems that need high levels of
dependability generally require some form of error handling
– To allow detection of anomalous conditions and recovery from these

conditions.

– Sometimes referred to as robustness characteristics.

 Defining requirements for such error handling is difficult

 Behavioral requirements generally assert positive attributes
– Input x produces output y

 But sometimes, input x produces “error”
– Either by plan or by accident

 This presentation examines one possible approach to defining
such requirements

MITRE
3

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Requirements

 System requirements describe what is expected of a system.
– Where “requirements” express the desired externally-visible behaviors of a

system, as observable by users and other systems

 Sometimes, requirements address error conditions
– Such as out-of-range inputs

– E.g., where 0 ≤ x ≤ 100, compute f(x)

 Where x < 0 or x > 100, return 0

 But what is the requirement if an input of 5 results in an internal
error state?
– Despite what the requirement says

– Return 0

– Return “error”

– ???

MITRE
4

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Example

 Consider a system that signals when the exact sequence of

“abc” is seen in an on-going input sequence of ASCII characters

 That is:

– Where x {ASCII characters}

f(x) =
1 when x=*abc

0 OW

f (x)
ASCII

characters

MITRE
5

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

State table for f(x)

State Input Next State Output

unseen a a_seen 0

 a unseen 0

a_seen a a_seen 0

 b ab_seen 0

 a b unseen 0

ab_seen a a_seen 0

 c abc_seen 1

 a c unseen 0

abc_seen a a_seen 0

 a unseen 0

MITRE
6

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

State diagram for f(x)

a_seen

ab_seen

abc_seen

unseen

a / 0

a / 0

a / 0

 a / 0

a b / 0

 a / 0

 a c / 0

a / 0
b / 0

c / 1

MITRE
7

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Completeness

 The state machine shown above concisely and unambiguously defines
the expected behavior for the component – sort of

– It is not complete.

 Suppose an input of “a” results in an error state
– Such as resulting from an exception raised by an internal component

– E.g. memory leak

– How do you define
the expected response?

 Inherent to specifying
 “reliability”
– Likelihood of failure

– E.g., failure rate to equal 1% of all
attempts

 Would like to formally specify this behavior

C

BA

MITRE
8

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

One approach

 Use words in a natural language

 English

– System S shall return a value of

 1 when it detects the sequence “abc” in the input stream of ASCII characters

 0 for every other situation except for error conditions

 -1 when it encounters an error condition

 French

– Système S doit renvoyer une valeur de

 1 Lorsqu'il détecte la séquence "abc" dans le flux d'entrée de caractères ASCII

 0 Pour tous les autres situation, à l'exception des conditions d'erreur

 -1 Lorsqu'il rencontre une condition d'erreur

 Lacks the precision of a formal notation such as a state chart

MITRE
9

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Another approach

 Start with a usage model, augmented with error likelihoods

 A usage model is irreducible discrete event finite state Markov

chain, with unique initial and final states

– Represented by a directed graph

 Usage models can be derived from state transition models used

to describe the behavior of a software component or system

 Usage model U = (S, T, P)
– S = set of program states s1, ..., sn

– T = set of state transitions t1,...,tm where each transition is a pair (si,sj)

– Probability function P: T → (0,1)

 Probability of state transition for each transition

– The sum of all transition probabilities emanating from a state s with transitions

Ts equals 1

MITRE
10

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Usage model example

 Basically, a usage model is a state transition model with the

likelihood of state transition (input stimulus) as an added factor

 Consider previous sample function and its state chart

 Augment each state transition with a value representing the

probability that the specific stimulus will be provided

 The probability may be estimated based on

– Expected usage profile

– Historical measurement and experience

– Prototypes

MITRE
11

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Usage model for f (x)

 One possible usage model

State Input Prob Next State Output

unseen a 0.10 a_seen 0

 a 0.90 unseen 0

a_seen a 0.10 a_seen 0

 b 0.05 ab_seen 0

 a b 0.85 unseen 0

ab_seen a 0.40 a_seen 0

 c 0.05 abc_seen 1

 a c 0.55 unseen 0

abc_seen a 0.10 a_seen 0

 a 0.90 unseen 0

MITRE
12

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Usage model diagram – graphical version

a_seen

ab_seen

abc_seen

pattern

unseen

0.10 a / 0

0.10 a / 0

0.10 a / 0

0.90 a / 0

0.90 a / 0

0.55 a c / 0

0.05 b / 0

0.05 c / 1

MITRE
13

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Example

 17,576 strings of length 3

Probability of any specific string if all symbols are equally likely = 1/17,576 = 0.000057

Probability of string abc given probs defined in usage model = 0.1*0.05*0.05 = 0.000250

a_seen

ab_seen

abc_seen

pattern

unseen

0.10 a / 0

0.10 a / 0

0.10 a / 0

0.90 a / 0

0.90 a / 0

0.55 a c / 0

0.05 b / 0

0.05 c / 1

MITRE
14

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Applications of usage models

 Usage models can be part of an automatic testing strategy
where the test cases are chosen according to the operational
profile
– Hence can be used to estimate the reliability of the software

– Accuracy depends on fidelity of assumed operational profile

 But as defined so far, does not directly support need to be able
to specify error handling requirements

 Needed:
– A way of specifying the desired likelihood of responses from the systems

– That is, with an input of “a”, 99% of the time, an output of 0 is required.

– The system is required to fail no more than 1% of the time

 Solution – add the required behavior to the usage model

MITRE
15

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Augmented usage model

State Input Prob

Input

Prob Next

State

Next State Output

unseen a 0.10 0.99 a_seen 0

 a 0.10 0.01 error 9

 a 0.90 0.99 unseen 0

 a 0.90 0.01 error 9

a_seen a 0.10 0.99 a_seen 0

 a 0.10 0.01 error 9

 b 0.05 0.99 ab_seen 0

 b 0.05 0.01 error 9

 a b 0.85 0.99 unseen 0

 a b 0.05 0.01 error 9

ab_seen a 0.40 0.99 a_seen 0

 a 0.05 0.01 error 9

 c 0.05 0.99 abc_seen 1

 c 0.05 0.01 error 9

 a c 0.55 0.99 unseen 0

 a c 0.55 0.01 error 9

abc_seen a 0.10 0.99 a_seen 0

 a 0.10 0.01 error 9

 a 0.90 0.99 unseen 0

 a 0.90 0.01 error 9

error # 0.90 0.99 unseen 0

 # 0.10 0.01 error 9

MITRE
16

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

State Input Prob

Input

Prob Next

State

Next State Output

unseen a 0.10 0.99 a_seen 0

a 0.10 0.01 error 9

 a 0.90 0.99 unseen 0

 a 0.90 0.01 error 9

a_seen a 0.10 0.99 a_seen 0

a 0.10 0.01 error 9

b 0.05 0.99 ab_seen 0

b 0.05 0.01 error 9

 a b 0.85 0.99 unseen 0

 a b 0.05 0.01 error 9

ab_seen a 0.40 0.99 a_seen 0

a 0.05 0.01 error 9

c 0.05 0.99 abc_seen 1

c 0.05 0.01 error 9

 a c 0.55 0.99 unseen 0

 a c 0.55 0.01 error 9

abc_seen a 0.10 0.99 a_seen 0

a 0.10 0.01 error 9

 a 0.90 0.99 unseen 0

 a 0.90 0.01 error 9

error # 0.90 0.99 unseen 0

0.10 0.01 error 9

Augmented usage model description

Current state

Stimulus (input)

Probability of the input

occurring

(a characterization of the

operational environment)

Probability of the

system transitioning to

the specific next state

Next state

Response

(output)

Required behavior

based on stimuli

Can be viewed as a

required behavior

MITRE
17

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Advantages

 An integrated model provides a definition of behavior that can
be analyzed and modeled as a unit
– Interactions of normal and exceptional processing can be more clearly

observed

 as opposed to providing separate definitions.

– The behavior can be simulated since the model is in the form of a state
machine

 The requirements development process is forced to directly
examine both normal and abnormal behaviors up front
– As a part of the requirements elicitation and analysis phase

– Rather than deferring the analysis of abnormal behaviors until later in the
development cycle

– This reduces the risk of inefficient and inappropriate error processing.

MITRE
18

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Advantages

 Expectations of reliability can be defined up front
– Supports explicit assignment of failure rates as a part of the requirements

process

– Allows developers and users to perform trade-off analyses and make decisions
based on an objective consideration of the alternatives

 Direct support to the verification and test process
– Model provides a way of selecting test cases such that the test cases conform

to the expected operational profile of how the product will be used

– Test cases are selected by traversing the state machine, with the selection of
inputs based on the likelihoods defined for each of the state transitions

– Approach already used for normal usage models

 Incorporating exception handling state transitions can increase the realism of the
test process

 Can also provide ability to assess overall error handling behaviors via simulation

MITRE
19

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Shortcomings

 How to determine the appropriate exception rates is not clearly
defined

 Correlating overall failure rates to the individual likelihoods
assigned to each of the exception occurrences is complex

 General lack of familiarity of developers in applying this
technique
– Most developers analyze what the system is to do

– Considering what might go wrong is not a common practice

– Introducing this thought process into the requirements elicitation activity might
confuse practitioners

 Until they learn how to apply it

 Until then, they may fail to adequately capture the true needs

– Once past learning curve, they will learn how to use it effectively

MITRE
20

NDIA Systems Engineering Conference 2012 Defining Requirements for Error Handling with Usage Models W.Bail

Conclusions

 Including error handling behaviors in specifying requirements is not
commonly practiced

 Current specification models and techniques do not directly support this
approach in an integrated way
– Although support exists for defining exceptional conditions (e.g., natural languages)

 Slight enhancements to the usage modeling technique can support an
integrated approach for defining normal behaviors as well as abnormal
and exceptional processing

 Approach provides a natural mechanism for defining the desired error
rate for the system
– And continues to support automatic generation of test cases to verify attainment of this

error rate

 More research needs to be performed to characterize the most effective
ways that this approach can be applied

