

A Framework for Expedited Systems Development (Work in Progress on a SERC Research Task)

Presentation to:

NDIA 15th Annual Systems Engineering Conference October 24, 2012

Debra Facktor Lepore

Debra.Lepore@stevens.edu

John Colombi Stevens Institute of Technology Air Force Institute of Technology

John.Colombi@afit.edu

This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Systems Engineering Research Center (SERC) under Contract H98230-08-D-0171. The SERC is a federally funded University Affiliated Research Center (UARC) managed by Stevens Institute of Technology consisting of a collaborative network of over 20 universities. More information is available at www.SERCuarc.org

- Challenge
- Research Goals
- Methodology
- Observations
- Framework
- Discussion

- DoD Acquisition is often plagued by cost and schedule growth
- Traditional Acquisition Process is not responsive to warfighter's changing asymmetric threats environment
 - —Some 7000+ Joint Urgent Operational Needs staffed over last few years (\$50+billion from 2005-09)
- As a result, over 30 rapid reaction, rapid prototyping, nontraditional acquisition organizations have been created.
 - —Army Prototype Integration Facility (PIF), AFRL Center for Rapid Product Development, Space and Missile Center Rapid Reaction Branch
 - —AF Rapid Acquisition Development Integration
 - -etc

What critical success factors from rapid can be learned and applied to traditional aquisition?

- Examine expedited systems engineering best practices from rapid organizations
- Develop framework for rapid SE
- Consider ability to be applied to DoD acquisition programs

Research Phases/ Timeline/ Status

	Description	Research	Status
Phase 1 (Sept – Dec 2011)	Planning and Interviews	Identify organizations practicing expedited systems engineering Visit selected organizations; conduct site interviews Incorporate input from the SERC Research Council	Complete
Phase 2 (Jan – Aug 2012)	Analyze and Develop	Analyze current state of the art in expedited SE Synthesize data Develop framework for expedited SE	Complete
Phase 3 (Mar – Sep 2012)	Pathfinder Plan Development	Prepare plan to validate framework on a DOD acquisition program Develop criteria and questions	Complete
Phase 4 (Funding TBD)	Test Phase	Observe and collect data Validate and iterate Framework	Working to identify funding

Questions Asked: Process

- Do you use standard/ formal SE processes in your rapid development organizations, if so which ones
- Are SE processes tailored for each program or product. If so, which ones can be highly tailorable and why
- How are SE methods, processes and tools different based on project scale/ scope
- What level of risk is acceptable, how do you determine that, and how do you systemically address it at all levels
- What is the formality of engineering documentation
- How replicable / transferable are your processes from one project or product to another
- How do model-based systems engineering approaches support your rapid development

- Do you integrate a variety of models/ simulations/ prototypes early in the lifecycle, and if so, how
- How would you describe your ability to be innovative in concept refinement
- What are best practices for problem domain understanding
- How do you manage scope and requirements
- What infrastructure (tools, modeling & simulation) allows continuously quickening product delivery cycles
- Decision Analysis Processes
 - Who, and at what level, are most engineering decisions made
 - Who is empowered, how do they know it, how are they supported
 - To what extent are major decisions documented, formalized, communicated
 - How do you prepare for major decisions

Questions Asked: People

- What types of teams do you use (e.g., domain, functional, IPT, etc.
- What are the primary leadership roles for an expedited project or for the best projects that run the most efficiently (program or project manager, chief engineer, chief architect, etc.)
- How do you select/ design the team
- What are the primary skills you seek for the team
- How do you effectively incorporate/ involve the end user
- How do you effectively and continuously incorporate the user perspective
- How do you manage and network people and teams that are not colocated

- What role does collaboration play... in management, in team building, in problem solving, in SE processes, and in geographically distributed teams
- How do you facilitate improved collaboration (internal, external)
- What collaborative tools or processes do you use
- What types of meetings do you hold, who attends, who makes decisions, and why
- How do you manage urgent project tempos and its personnel effects (stress, work hours, burnout)
- How do you reduce complexity of the SE process

Questions Asked: Product & Project

- Product (Architectural Design Considerations)
 - How do you translate prototypes to operational use
 - How long is the intended operational lifecycle of the product
 - How many units are you producing/ fielding
 - How does your rapid development schedule drive architectural/ design choices
 - How does reuse, modification of existing systems, or using product lines drive reduced schedules
 - How does the level of complexity effect the product architecture

- Project (size, scope, time)
 - How are answers dependent (scalable) on size of the project (scope, cost, timeline, risk, # people)
- Not Asked but Came Up
 - Context of Project
 - Business Case
 - Integration

Definition: What is Rapid

- The Department of Defense does not have a consistent definition for the term <u>rapid acquisition</u>
- General sense that rapid fielding programs deliver capabilities within a <u>2-year window</u>
 - —Shorter than lead time to simply budget for normal acquisition programs
 - Time begins when a need emerges in the field and concludes at the initial capability fielding
 - —Transition to a program of record, where appropriate, typically occurs beyond this two year window
- Other definitions referenced
 - —<u>Half the time</u> of traditional ACAT 1 (largest) defense programs
 - —Less than <u>18-24 months</u>
 - —Less than <u>3 years</u> for rapid space

Observations: Organizational Best Practices

- 11 Observations common practices, whether rapid or not
 - —Principles, habits, heuristics, tenants, practices, behaviors

Product

- The what
- Defines conceptual use of technology used to meet the operational needs of warfighters. Architecture/ Design and Deployment aspects of solution

Process

- •The how and where
- •Describes key programmatic and system engineering strategies used to successfully execute rapid product development. People characteristics. Organization.

People

- The who
- The characteristics, knowledge, education, and behaviors of the personnel in these organizations. Governance / oversight surrounding the acquisition

Product: Faster Architecture?

- System Simplification
- Reuse/ Leverage Legacy architecture/components
 - Focus on Integration of mature technologies
- Separation of concerns (coupling/interfaces/parallel effort)
- More use of prototyping

GBU-32 JDAM
Joint Direct Attack Munition

Process: Is Rapid just about Faster Tasks?

- INCOSE/ ISO 15288 / DAU Systems Engineering Processes
 - Requirements, Architecture/ Design , V&V, Integration, Decision Analysis,
 Tech Planning, Trade Studies, Config/ Data/ Interface Management, etc
- Do the SE processes (tasks and activities) better
 - —More efficient, Faster (time), Tailored
 - —If skipped, what steps incur Technical Debt?
 - —Spending *more* time on certain tasks may reduce overall cycle
 - —Task Network
- Consider Technical
 Debt along the way

Process: Importance of Up Front Concept Design & Requirements

- Create and evaluate conceptual designs in synergistic, concurrent, collaborative manner, with design engineers and customers
- Simultaneous requirements development and design engineering with realtime tradeoffs and "what if" analyses

The Collaborative Visualization Environment allows decision-makers to see solutions in their entirety and see the answers to "what if" questions in real-time

People: Implement the Process to make the Product

- Co-located
 - —Though some efforts to collaborate virtually
- Small, handpicked Teams
 - —"A" versus "B" Team

- Experience (previous skills, mentoring, training, hands-on)
- Parallelization of work
- Empowered teams with Improved Decision Making (no stall time) and top-level leadership support
- Hands-on experiences important to grow engineers

Overwhelming response on the importance of "Designing the Design team"

"Go Fast" Cultural Best Practices

Signified by a shift in energy, commitment, and knowledge

"Rapid World" Best Practices

- Not a Single Rapid, But Many Different Flexible Rapids
- Can be interpreted as "lanes of acquisition")

- Does the Framework resonate with you?
- Is anything missing?
- What are the most important attributes and principles?
- Where do you see your organization?
- Are there traditional organizations that are using the same principles that allow them to "go faster"

SERC RT-34 Contributors/Collaborators

And collaboration with the SERC Research Council, Synergies with other SERC RTs, Input from Air Force sponsors, etc.

Debra Facktor Lepore
Principal Investigator, SERC RT-34
Director of Strategic Programs, SERC
Industry Professor, Stevens Inst of Tech
debra.lepore@stevens.edu
425-985-1350

Dr John Colombi
Co-PI, SERC RT-34
Asst Professor of Systems Engineering
Air Force Institute of Technology
John.colombi@afit.edu
937-255-3355 x3347